Deep Learning-based Estimation for Multitarget Radar Detection

被引:4
|
作者
Delamou, Mamady [1 ]
Bazzi, Ahmad [2 ]
Chafii, Marwa [2 ,3 ]
Amhoud, El Mehdi [1 ]
机构
[1] Mohammed VI Polytech Univ, Sch Comp Sci, Ben Guerir, Morocco
[2] New York Univ NYU, Div Engn, Abu Dhabi, U Arab Emirates
[3] NYU Tandon Sch Engn, NYU WIRELESS, Brooklyn, NY USA
关键词
Convolutional neural network; joint communication and sensing; monostatic radar;
D O I
10.1109/VTC2023-Spring57618.2023.10200157
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Target detection and recognition is a very challenging task in a wireless environment where a multitude of objects are located, whether to effectively determine their positions or to identify them and predict their moves. In this work, we propose a new method based on a convolutional neural network (CNN) to estimate the range and velocity of moving targets directly from the range-Doppler map of the detected signals. We compare the obtained results to the two dimensional (2D) periodogram, and to the similar state of the art methods, 2DResFreq and VGG-19 network and show that the estimation process performed with our model provides better estimation accuracy of range and velocity index in different signal to noise ratio (SNR) regimes along with a reduced prediction time. Afterwards, we assess the performance of our proposed algorithm using the peak signal to noise ratio (PSNR) which is a relevant metric to analyse the quality of an output image obtained from compression or noise reduction. Compared to the 2D-periodogram, 2DResFreq and VGG-19, we gain 33 dB, 21 dB and 10 dB, respectively, in terms of PSNR when SNR = 30 dB.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A Survey of Deep Learning-Based Object Detection
    Jiao, Licheng
    Zhang, Fan
    Liu, Fang
    Yang, Shuyuan
    Li, Lingling
    Feng, Zhixi
    Qu, Rong
    IEEE ACCESS, 2019, 7 : 128837 - 128868
  • [32] Deep learning-based detection of seedling development
    Samiei, Salma
    Rasti, Pejman
    Ly Vu, Joseph
    Buitink, Julia
    Rousseau, David
    PLANT METHODS, 2020, 16 (01)
  • [33] Deep learning-based detection of seedling development
    Salma Samiei
    Pejman Rasti
    Joseph Ly Vu
    Julia Buitink
    David Rousseau
    Plant Methods, 16
  • [34] Deep learning-based detection of eosinophilic esophagitis
    Guimaraes, Pedro
    Keller, Andreas
    Fehlmann, Tobias
    Lammert, Frank
    Casper, Markus
    ENDOSCOPY, 2022, 54 (03) : 299 - 304
  • [35] Deep Learning-Based Crack Detection: A Survey
    Nguyen, Son Dong
    Tran, Thai Son
    Tran, Van Phuc
    Lee, Hyun Jong
    Piran, Md. Jalil
    Le, Van Phuc
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (04) : 943 - 967
  • [36] Deep learning-based wall crack detection
    Zheng, Zujia
    Yang, Kui
    International Journal of Wireless and Mobile Computing, 2024, 27 (02) : 118 - 124
  • [37] Deep Learning-Based Crack Detection: A Survey
    Son Dong Nguyen
    Thai Son Tran
    Van Phuc Tran
    Hyun Jong Lee
    Md. Jalil Piran
    Van Phuc Le
    International Journal of Pavement Research and Technology, 2023, 16 : 943 - 967
  • [38] A Deep Learning-Based Detection of Wrinkles on Skin
    Deepa, H.
    Gowrishankar, S.
    Veena, A.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 25 - 37
  • [39] Deep learning-based pavement subsurface distress detection via ground penetrating radar data
    Li, Yishun
    Liu, Chenglong
    Yue, Guanghua
    Gao, Qian
    Du, Yuchuan
    AUTOMATION IN CONSTRUCTION, 2022, 142
  • [40] Deep Learning-Based Intrusion Detection with Adversaries
    Wang, Zheng
    IEEE ACCESS, 2018, 6 : 38367 - 38384