Reinforcement learning approaches for the stochastic discrete lot-sizing problem on parallel machines
被引:1
|
作者:
Felizardo, Leonardo Kanashiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, BrazilUniv Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
Felizardo, Leonardo Kanashiro
[1
]
Fadda, Edoardo
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
Fadda, Edoardo
[2
]
Del-Moral-Hernandez, Emilio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, BrazilUniv Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
Del-Moral-Hernandez, Emilio
[1
]
Brandimarte, Paolo
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
Brandimarte, Paolo
[2
]
机构:
[1] Univ Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
[2] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
This paper addresses the stochastic discrete lot-sizing problem on parallel machines, which is a computationally challenging problem also for relatively small instances. We propose two heuristics to deal with it by leveraging reinforcement learning. In particular, we propose a technique based on approximate value iteration around post-decision state variables and one based on multi-agent reinforcement learning. We compare these two approaches with other reinforcement learning methods and more classical solution techniques, showing their effectiveness in addressing realistic size instances.
机构:
Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USAUniv Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
Chen, Xin
Zhang, Jiawei
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Stern Sch Business, IOMS Operat Management, 550 1St Ave, New York, NY 10012 USAUniv Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA