Reinforcement learning approaches for the stochastic discrete lot-sizing problem on parallel machines
被引:1
|
作者:
Felizardo, Leonardo Kanashiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, BrazilUniv Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
Felizardo, Leonardo Kanashiro
[1
]
Fadda, Edoardo
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
Fadda, Edoardo
[2
]
Del-Moral-Hernandez, Emilio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, BrazilUniv Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
Del-Moral-Hernandez, Emilio
[1
]
Brandimarte, Paolo
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
Brandimarte, Paolo
[2
]
机构:
[1] Univ Sao Paulo, Escola Politecn, Ave Prof Luciano Gualberto 380, Sao Paulo, Brazil
[2] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
This paper addresses the stochastic discrete lot-sizing problem on parallel machines, which is a computationally challenging problem also for relatively small instances. We propose two heuristics to deal with it by leveraging reinforcement learning. In particular, we propose a technique based on approximate value iteration around post-decision state variables and one based on multi-agent reinforcement learning. We compare these two approaches with other reinforcement learning methods and more classical solution techniques, showing their effectiveness in addressing realistic size instances.
机构:
Hong Kong Polytech Univ, Dept Logist & Maritime Studies, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Logist & Maritime Studies, Kowloon, Hong Kong, Peoples R China
Jiao, Wen
Zhang, Ju-Liang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Sch Econ & Management, Dept Logist Management, Beijing 100044, Peoples R ChinaHong Kong Polytech Univ, Dept Logist & Maritime Studies, Kowloon, Hong Kong, Peoples R China
Zhang, Ju-Liang
Yan, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Logist & Maritime Studies, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Logist & Maritime Studies, Kowloon, Hong Kong, Peoples R China