Unconditional well-posedness for the periodic Boussinesq and Kawahara equations

被引:0
|
作者
Geba, Dan -Andrei [1 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 02期
关键词
Boussinesq equation; Kawahara equation; well-posedness; unconditional uniqueness; normal form; NONLINEAR SCHRODINGER-EQUATIONS; GENERALIZED BOUSSINESQ;
D O I
10.3934/era.2024052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we obtain new results on the unconditional well-posedness for a pair of periodic nonlinear dispersive equations using an abstract framework introduced by Kishimoto. This framework is based on a normal form reductions argument coupled with a number of crucial multilinear estimates.
引用
收藏
页码:1067 / 1081
页数:15
相关论文
共 50 条
  • [31] STUDY ON THE WELL-POSEDNESS OF STOCHASTIC BOUSSINESQ EQUATIONS WITH NAVIER BOUNDARY CONDITIONS
    Sun, Chengfeng
    Jiang, Shan
    Liu, Hui
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023,
  • [32] A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION
    Ye, Zhuan
    [J]. ACTA MATHEMATICA SCIENTIA, 2015, 35 (01) : 112 - 120
  • [34] On the global well-posedness of a generalized 2D Boussinesq equations
    Jia, Junxiong
    Peng, Jigen
    Li, Kexue
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04): : 911 - 945
  • [35] Global well-posedness for strongly damped multidimensional generalized Boussinesq equations
    Shen Jihong
    Zhang Mingyou
    Wang Xingchang
    Liu Bowei
    Xu Runzhang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (15) : 4437 - 4450
  • [36] On unconditional well-posedness for the periodic modified Korteweg-de Vries equation
    Molinet, Luc
    Pilod, Didier
    Vento, Stephane
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (01) : 147 - 201
  • [37] Well-posedness and inviscid limits of the Boussinesq equations with fractional Laplacian dissipation
    Wu, Jiahong
    Xu, Xiaojing
    [J]. NONLINEARITY, 2014, 27 (09) : 2215 - 2232
  • [38] ON THE WELL-POSEDNESS OF THE INVISCID BOUSSINESQ EQUATIONS IN THE BESOV-MORREY SPACES
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-An
    [J]. KINETIC AND RELATED MODELS, 2015, 8 (03) : 395 - 411
  • [39] GLOBAL WELL-POSEDNESS FOR THE KAWAHARA EQUATION WITH LOW REGULARITY
    Kato, Takamori
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (03) : 1321 - 1339
  • [40] Unconditional well-posedness for subcritical NLS in HS
    Rogers, Keith M.
    [J]. COMPTES RENDUS MATHEMATIQUE, 2007, 345 (07) : 395 - 398