Cancer drug sensitivity prediction from routine histology images

被引:4
|
作者
Dawood, Muhammad [1 ]
Vu, Quoc Dang [1 ]
Young, Lawrence S. [2 ,3 ]
Branson, Kim [4 ]
Jones, Louise [5 ]
Rajpoot, Nasir [1 ,3 ,6 ]
Minhas, Fayyaz ul Amir Afsar [1 ,3 ]
机构
[1] Univ Warwick, Tissue Image Analyt Ctr, Coventry, England
[2] Univ Warwick, Warwick Med Sch, Coventry, England
[3] Univ Warwick, Canc Res Ctr, Coventry, England
[4] GlaxoSmithKline, Artificial Intelligence & Machine Learning, San Francisco, CA USA
[5] Queen Mary Univ London, Barts Canc Inst, London, England
[6] Alan Turing Inst, London, England
基金
英国工程与自然科学研究理事会;
关键词
BREAST-CANCER; PHARMACOGENOMICS; CHALLENGES; TAMOXIFEN; MODEL;
D O I
10.1038/s41698-023-00491-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Drug sensitivity prediction models can aid in personalising cancer therapy, biomarker discovery, and drug design. Such models require survival data from randomised controlled trials which can be time consuming and expensive. In this proof-of-concept study, we demonstrate for the first time that deep learning can link histological patterns in whole slide images (WSIs) of Haematoxylin & Eosin (H&E) stained breast cancer sections with drug sensitivities inferred from cell lines. We employ patient-wise drug sensitivities imputed from gene expression-based mapping of drug effects on cancer cell lines to train a deep learning model that predicts patients' sensitivity to multiple drugs from WSIs. We show that it is possible to use routine WSIs to predict the drug sensitivity profile of a cancer patient for a number of approved and experimental drugs. We also show that the proposed approach can identify cellular and histological patterns associated with drug sensitivity profiles of cancer patients.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A framework for personalized medicine: prediction of drug sensitivity in cancer by proteomic profiling
    Dong-Chul Kim
    Xiaoyu Wang
    Chin-Rang Yang
    Jean X Gao
    Proteome Science, 10
  • [42] Deciphering the signaling network of breast cancer improves drug sensitivity prediction
    Tognetti, Marco
    Gabor, Attila
    Yang, Mi
    Cappelletti, Valentina
    Windhager, Jonas
    Rueda, Oscar M.
    Charmpi, Konstantina
    Esmaeilishirazifard, Elham
    Bruna, Alejandra
    de Souza, Natalie
    Caldas, Carlos
    Beyer, Andreas
    Picotti, Paola
    Saez-Rodriguez, Julio
    Bodenmiller, Bernd
    CELL SYSTEMS, 2021, 12 (05) : 401 - +
  • [43] Network-based Biased Tree Ensembles (NetBiTE) for Drug Sensitivity Prediction and Drug Sensitivity Biomarker Identification in Cancer
    Oskooei, Ali
    Manica, Matteo
    Mathis, Roland
    Martinez, Maria Rodriguez
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [44] Network-based Biased Tree Ensembles (NetBiTE) for Drug Sensitivity Prediction and Drug Sensitivity Biomarker Identification in Cancer
    Ali Oskooei
    Matteo Manica
    Roland Mathis
    María Rodríguez Martínez
    Scientific Reports, 9
  • [45] FABnet: feature attention-based network for simultaneous segmentation of microvessels and nerves in routine histology images of oral cancer
    M. M. Fraz
    S. A. Khurram
    S. Graham
    M. Shaban
    M. Hassan
    A. Loya
    N. M. Rajpoot
    Neural Computing and Applications, 2020, 32 : 9915 - 9928
  • [46] Breast cancer histology images classification: Training from scratch or transfer learning?
    Shallu
    Mehra, Rajesh
    ICT EXPRESS, 2018, 4 (04): : 247 - 254
  • [47] Predicting Colon Cancer Outcomes from Histology Images Using Convolutional Networks
    Chen, S.
    Wang, J.
    Zhang, M.
    Xu, M.
    Sheng, W.
    Fang, Y.
    Hu, W.
    Zhang, Z.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E129 - E129
  • [48] FABnet: feature attention-based network for simultaneous segmentation of microvessels and nerves in routine histology images of oral cancer
    Fraz, M. M.
    Khurram, S. A.
    Graham, S.
    Shaban, M.
    Hassan, M.
    Loya, A.
    Rajpoot, N. M.
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (14): : 9915 - 9928
  • [49] Segnet-Based Gland Segmentation from Colon Cancer Histology Images
    Tang, Jing
    Li, Jun
    Xu, Xiangping
    PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2018, : 1078 - 1082
  • [50] lSurvival outcome prediction of primary melanoma tumours from histology images using deep learning
    Bossard, C.
    Salhi, Y.
    Quereux, G.
    Khammari, A.
    Salhi, S.
    Jerome, C.
    ANNALS OF ONCOLOGY, 2023, 34 : S696 - S696