KEMR-Net: A Knowledge-Enhanced Mask Refinement Network for Chromosome Instance Segmentation

被引:1
|
作者
Zhou, Renhao [1 ]
Yu, Linfeng [1 ]
Chen, Ding [1 ,4 ]
Zhang, Haoxi [1 ,2 ]
Szczerbicki, Edward [3 ]
机构
[1] Chengdu Univ Informat Technol, Sch Cybersecur, Chengdu, Peoples R China
[2] Adv Cryptog & Syst Secur Key Lab Sichuan Prov, Chengdu, Peoples R China
[3] Gdansk Univ Technol, Fac Management & Econ, Gdansk, Poland
[4] Chengdu Univ Informat Technol, Sch Cybersecur, 24 Block 1,Xuefu Rd, Chengdu 610225, Peoples R China
关键词
Chromosome instance segmentation; knowledge-enhanced; mask refinement; neural knowledge DNA;
D O I
10.1080/01969722.2022.2162741
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes a mask refinement method for chromosome instance segmentation. The proposed method exploits the knowledge representation capability of Neural Knowledge DNA (NK-DNA) to capture the semantics of the chromosome's shape, texture, and key points, and then it uses the captured knowledge to improve the accuracy and smoothness of the masks. We validate the method's effectiveness on our latest high-resolution chromosome image dataset. The experimental results show that our proposed method's mask average precision (MaskAP) is 3.66% higher than Mask R-CNN and outperforms advanced Cascade Mask R-CNN by 1.35%.
引用
收藏
页码:708 / 718
页数:11
相关论文
共 50 条
  • [1] ENHANCED MASK INTERACTION NETWORK FOR SAR SHIP INSTANCE SEGMENTATION
    Zhang, Tianwen
    Zhang, Xiaoling
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3508 - 3511
  • [2] ADAPTIVE FUSION AND MASK REFINEMENT INSTANCE SEGMENTATION NETWORK FOR HIGH RESOLUTION REMOTE SENSING IMAGES
    Ran, Jie
    Yang, Feng
    Gao, Chenqiang
    Zhao, Yue
    Qin, Anyong
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2843 - 2846
  • [3] Knowledge-Enhanced Historical Document Segmentation and Recognition
    Gao, En-Hao
    Huang, Yu-Xuan
    Hu, Wen-Chao
    Zhu, Xin-Hao
    Dai, Wang-Zhou
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8409 - 8416
  • [4] Knowledge-enhanced graph convolutional network for recommendation
    Xianlun Tang
    Jingming Yang
    Deyi Xiong
    Yang Luo
    Huimin Wang
    Deguang Peng
    [J]. Multimedia Tools and Applications, 2022, 81 : 28899 - 28916
  • [5] Knowledge-enhanced graph convolutional network for recommendation
    Tang, Xianlun
    Yang, Jingming
    Xiong, Deyi
    Luo, Yang
    Wang, Huimin
    Peng, Deguang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28899 - 28916
  • [7] Deep Knowledge-Enhanced Network for News Recommendation
    Liu Q.
    Song X.
    Qin M.
    [J]. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2021, 41 (03): : 286 - 294
  • [8] Mask refinement network for tooth segmentation on panoramic radiographs
    Niu, Li
    Zhong, Shengwei
    Yang, Zhiyu
    Tan, Baochun
    Zhao, Junjie
    Zhou, Wei
    Zhang, Peng
    Hua, Lingchen
    Sun, Weibin
    Li, Houxuan
    [J]. DENTOMAXILLOFACIAL RADIOLOGY, 2024, 53 (02) : 127 - 136
  • [9] Maximal Information Complemented Refinement Network for Gland Instance Segmentation
    Xu, Bowen
    Wang, Yankai
    Yang, Dawei
    Zhang, Wei
    Zhang, Ye
    Kong, Yajie
    Zhang, Wenqiang
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 972 - 975
  • [10] DKEN: Deep knowledge-enhanced network for recommender systems
    Guo, Xiaobo
    Lin, Wenfang
    Li, Youru
    Liu, Zhongyi
    Yang, Lin
    Zhao, Shuliang
    Zhu, Zhenfeng
    [J]. INFORMATION SCIENCES, 2020, 540 : 263 - 277