ENHANCED MASK INTERACTION NETWORK FOR SAR SHIP INSTANCE SEGMENTATION

被引:2
|
作者
Zhang, Tianwen [1 ]
Zhang, Xiaoling [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
关键词
Synthetic aperture radar (SAR); ship instance segmentation; enhanced mask interaction network (EMIN); atrous spatial pyramid pooling (ASPP); non-local block (NLB); concatenation shuffle attention (CSA);
D O I
10.1109/IGARSS46834.2022.9884709
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We propose an enhanced mask interaction network (EMIN) for ship instance segmentation from synthetic aperture radar (SAR) images. EMIN adopts three techniques to improve SAR ship instance segmentation performance - 1) an atrous spatial pyramid pooling (ASPP) to enable multi-resolution feature responses, 2) a non-local block (NLB) to capture long-range spatial dependencies, and 3) a concatenation shuffle attention (CSA) to boost mask interaction benefits. Results on the public SAR ship detection dataset (SSDD) show that - 1) the above each technique can offer an observable accuracy gain, and 2) EMIN surpasses the original MIN by 2.1% detection AP and 2.4% mask AP on SSDD.
引用
收藏
页码:3508 / 3511
页数:4
相关论文
共 50 条
  • [1] A Mask Attention Interaction and Scale Enhancement Network for SAR Ship Instance Segmentation
    Zhang, Tianwen
    Zhang, Xiaoling
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] HTC plus for SAR Ship Instance Segmentation
    Zhang, Tianwen
    Zhang, Xiaoling
    [J]. REMOTE SENSING, 2022, 14 (10)
  • [3] Scale in Scale for SAR Ship Instance Segmentation
    Shao, Zikang
    Zhang, Xiaoling
    Wei, Shunjun
    Shi, Jun
    Ke, Xiao
    Xu, Xiaowo
    Zhan, Xu
    Zhang, Tianwen
    Zeng, Tianjiao
    [J]. REMOTE SENSING, 2023, 15 (03)
  • [4] Contextual Squeeze-and-Excitation Mask R-CNN for SAR Ship Instance Segmentation
    Zhang, Tianwen
    Zhang, Xiaoling
    Li, Jianwei
    Shi, Jun
    [J]. 2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [5] Synergistic Attention for Ship Instance Segmentation in SAR Images
    Zhao, Danpei
    Zhu, Chunbo
    Qi, Jing
    Qi, Xinhu
    Su, Zhenhua
    Shi, Zhenwei
    [J]. REMOTE SENSING, 2021, 13 (21)
  • [6] GCBANet: A Global Context Boundary-Aware Network for SAR Ship Instance Segmentation
    Ke, Xiao
    Zhang, Xiaoling
    Zhang, Tianwen
    [J]. REMOTE SENSING, 2022, 14 (09)
  • [7] Cascade Aggregation Network for Ship Instance Segmentation
    Sun, Yuxin
    Su, Li
    Yuan, Shouzheng
    Meng, Hao
    [J]. 2023 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS, ICCAR, 2023, : 355 - 359
  • [8] Global Mask R-CNN for marine ship instance segmentation
    Sun, Yuxin
    Su, Li
    Luo, Yongkang
    Meng, Hao
    Li, Wanyi
    Zhang, Zhi
    Wang, Peng
    Zhang, Wen
    [J]. NEUROCOMPUTING, 2022, 480 : 257 - 270
  • [9] A Deep Detection Network Based on Interaction of Instance Segmentation and Object Detection for SAR Images
    Wu, Zitong
    Hou, Biao
    Ren, Bo
    Ren, Zhongle
    Wang, Shuang
    Jiao, Licheng
    [J]. REMOTE SENSING, 2021, 13 (13)
  • [10] SAR Ship Instance Segmentation With Dynamic Key Points Information Enhancement
    Gao, Fei
    Han, Xu
    Wang, Jun
    Sun, Jinping
    Hussain, Amir
    Zhou, Huiyu
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11365 - 11385