Belief structure-based Pythagorean fuzzy entropy and its application in multi-source information fusion

被引:4
|
作者
Mao, Kun [1 ]
Wang, Yanni [2 ]
Ye, Jiangang [3 ]
Zhou, Wen [3 ]
Lin, Yu [4 ]
Fang, Bin [5 ]
机构
[1] Quzhou Coll Technol, Fac Informat Engn, Quzhou 324000, Peoples R China
[2] Capital Univ Phys Educ & Sports, Inst Artificial Intelligence Sports, Beijing 100086, Peoples R China
[3] Quzhou Special Equipment Inspect Ctr, R&D Ctr, Quzhou 324000, Peoples R China
[4] Wenzhou Med Univ, Peoples Hosp, Quzhou Affiliated Hosp, Dept Hlth Management Ctr, Quzhou 324000, Peoples R China
[5] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Dempster-Shafer theory; Pythagorean fuzzy set; Uncertainty measure; Information fusion; Fractal-based belief entropy; SETS;
D O I
10.1016/j.asoc.2023.110860
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-standard fuzzy sets play a significant role in uncertainty modeling. In addition to membership and non-membership degree, how to handle the hesitant degree is the key issue in the uncertain information process. In this paper, we model the Pythagorean fuzzy set (PFS) under the belief structure and measure its uncertainty based on fractal-based belief (FB) entropy. A novel fuzzy entropy for PFS called belief structure -based Pythagorean fuzzy (BSPF) entropy is proposed, whose effectiveness and advantages are proven based on mathematical analysis and numerical examples. A comparative analysis between BSPF entropy and other methods shows that BSPF entropy can obtain more reasonable results. Besides, a BSPF entropy-based multi -criteria decision-making (MCDM) method and a classification method are designed to solve practical problems. The experimental results demonstrate the effectiveness of these two proposed methods in solving real-world problems of decision-making and classification.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] MSIF: Multi-source information fusion based on information sets
    Yang, Feifei
    Zhang, Pengfei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4103 - 4112
  • [22] A novel belief Renyi divergence based on belief and plausibility function and its applications in multi-source data fusion
    Jin, Xiaofei
    Chang, Yuhang
    Zhang, Huimin
    Kang, Bingyi
    Zhang, Jianfeng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [23] Multi-label feature selection based on information entropy fusion in multi-source decision system
    Wenbin Qian
    Sudan Yu
    Jun Yang
    Yinglong Wang
    Jihao Zhang
    Evolutionary Intelligence, 2020, 13 : 255 - 268
  • [24] A belief logarithmic similarity measure based on Dempster-Shafer theory and its application in multi-source data fusion
    Huang, Haojian
    Liu, Zhe
    Han, Xue
    Yang, Xiangli
    Liu, Lusi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (03) : 4935 - 4947
  • [25] Multi-label feature selection based on information entropy fusion in multi-source decision system
    Qian, Wenbin
    Yu, Sudan
    Yang, Jun
    Wang, Yinglong
    Zhang, Jihao
    EVOLUTIONARY INTELLIGENCE, 2020, 13 (02) : 255 - 268
  • [26] Multi-source Information Fusion Based on Data Driven
    Zhang Xin
    Yang Li
    Zhang Yan
    ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2, 2011, 40-41 : 121 - 126
  • [27] Ensemble Learning Based Multi-Source Information Fusion
    Xu, Junyi
    Li, Le
    Ji, Ming
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [28] Multi-Source Information Fusion Technology and Its Application in Smart Distribution Power System
    He, Xi
    Dong, Heng
    Yang, Wanli
    Li, Wei
    SUSTAINABILITY, 2023, 15 (07)
  • [29] Multi-granulation Pythagorean fuzzy decision-theoretic rough sets based on inclusion measure and their application in incomplete multi-source information systems
    Mandal, Prasenjit
    Ranadive, A. S.
    COMPLEX & INTELLIGENT SYSTEMS, 2019, 5 (02) : 145 - 163
  • [30] Multi-granulation Pythagorean fuzzy decision-theoretic rough sets based on inclusion measure and their application in incomplete multi-source information systems
    Prasenjit Mandal
    A. S. Ranadive
    Complex & Intelligent Systems, 2019, 5 : 145 - 163