Toward Robust Hierarchical Federated Learning in Internet of Vehicles

被引:29
|
作者
Zhou, Hongliang [1 ]
Zheng, Yifeng [1 ]
Huang, Hejiao [1 ]
Shu, Jiangang [2 ,3 ]
Jia, Xiaohua [1 ,4 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
[2] City Univ Hong Kong Dongguan, Ctr Comp Scienceand Informat Technol, Dongguan 523000, Peoples R China
[3] Peng Cheng Lab, Dept New Networks, Shenzhen 518000, Peoples R China
[4] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
关键词
Federated learning; Training; Servers; Robustness; Internet of Vehicles; Convergence; Computational modeling; hierarchical federated learning; poisoning attacks; robustness; MODEL AGGREGATION; EDGE;
D O I
10.1109/TITS.2023.3243003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The rapid growth of the Internet of Vehicles (IoV) paradigm sparks the generation of large volumes of distributed data at vehicles, which can be harnessed to build models for intelligent applications. Federated learning has recently received wide attentions, which allows model training over distributed datasets without requiring raw datasets to be shared out. However, federated learning is known to be vulnerable to poisoning attacks, where malicious clients may manipulate the local datasets or model updates to corrupt the global model. Such attacks have to be countered when federated learning is adopted in IoV systems, given that the training process is distributed among a large number of vehicles in an open environment. In addition, IoV systems present a hierarchical architecture in practice where other types of nodes sit between the cloud server and vehicles, allowing intermediate aggregation for reducing overall training latency. Yet the intermediate aggregation nodes may also pose threats. In this paper, we propose a robust hierarchical federated learning framework named RoHFL, which allows hierarchical federated learning to be suitably applied in the IoV with robustness against poisoning attacks. We develop a robust model aggregation scheme that contains a logarithm-based normalization mechanism to cope with scaled gradients from malicious vehicles. We integrate the notion of reputation into the aggregation process and develop a scheme for reputation updating. We provide a formal analysis of RoHFL's convergence guarantees. Experiment results over several popular datasets demonstrate the promising performance of RoHFL, which is superior to prior work in the robustness against poisoning attacks.
引用
收藏
页码:5600 / 5614
页数:15
相关论文
共 50 条
  • [41] A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles
    Naiyu Wang
    Wenti Yang
    Xiaodong Wang
    Longfei Wu
    Zhitao Guan
    Xiaojiang Du
    Mohsen Guizani
    Digital Communications and Networks, 2024, 10 (01) : 126 - 134
  • [42] A Federated Learning Framework Based on Incremental Weighting and Diversity Selection for Internet of Vehicles
    Lei, Yuan
    Wang, Shir Li
    Zhong, Minghui
    Wang, Meixia
    Ng, Theam Foo
    ELECTRONICS, 2022, 11 (22)
  • [43] Federated edge learning with reconfigurable intelligent surface and its application in Internet of vehicles
    Wang, Ping
    Yang, Zhiwei
    Li, Heju
    Tongxin Xuebao/Journal on Communications, 2023, 44 (10): : 46 - 57
  • [44] Dynamic Federated Learning-Based Economic Framework for Internet-of-Vehicles
    Saputra, Yuris Mulya
    Hoang, Dinh Thai
    Nguyen, Diep N.
    Tran, Le-Nam
    Gong, Shimin
    Dutkiewicz, Eryk
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (04) : 2100 - 2115
  • [45] Federated Learning and Reputation-Based Node Selection Scheme for Internet of Vehicles
    Su, Zhaoyu
    Cheng, Ruimin
    Li, Chunhai
    Chen, Mingfeng
    Zhu, Jiangnan
    Long, Yan
    ELECTRONICS, 2025, 14 (02):
  • [46] A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles
    Wang, Naiyu
    Yang, Wenti
    Wang, Xiaodong
    Wu, Longfei
    Guan, Zhitao
    Du, Xiaojiang
    Guizani, Mohsen
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (01) : 126 - 134
  • [47] KAFKAFED: Two-Tier Federated Learning Communication Architecture for Internet of Vehicles
    Bano, Saira
    Tonellotto, Nicola
    Cassara, Pietro
    Gotta, Alberto
    2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2022,
  • [48] Blockchain Empowered Asynchronous Federated Learning for Secure Data Sharing in Internet of Vehicles
    Lu, Yunlong
    Huang, Xiaohong
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (04) : 4298 - 4311
  • [49] Federated Learning with Blockchain for Privacy-Preserving Data Sharing in Internet of Vehicles
    Wenxian Jiang
    Mengjuan Chen
    Jun Tao
    China Communications, 2023, 20 (03) : 69 - 85
  • [50] A comprehensive intrusion detection method for the internet of vehicles based on federated learning architecture
    Huang, Kun
    Xian, Rundong
    Xian, Ming
    Wang, Huimei
    Ni, Lin
    COMPUTERS & SECURITY, 2024, 147