scFates: a scalable python']python package for advanced pseudotime and bifurcation analysis from single-cell data

被引:27
|
作者
Faure, Louis [1 ]
Soldatov, Ruslan [2 ]
Kharchenko, Peter, V [2 ,3 ]
Adameyko, Igor [1 ]
机构
[1] Med Univ Vienna, Ctr Brain Res, Dept Neuroimmunol, A-1090 Vienna, Austria
[2] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[3] Altos Labs, San Diego, CA 92121 USA
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
D O I
10.1093/bioinformatics/btac746
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
scFates provides an extensive toolset for the analysis of dynamic trajectories comprising tree learning, feature association testing, branch differential expression and with a focus on cell biasing and fate splits at the level of bifurcations. It is meant to be fully integrated into the scanpy ecosystem for seamless analysis of trajectories from single-cell data of various modalities (e.g. RNA and ATAC).
引用
收藏
页数:3
相关论文
共 50 条
  • [31] OpenTree: A Python']Python Package for Accessing and Analyzing Data from the Open Tree of Life
    Mctavish, Emily Jane
    Sanchez-Reyes, Luna Luisa
    Holder, Mark T.
    SYSTEMATIC BIOLOGY, 2021, 70 (06) : 1295 - 1301
  • [32] RamanSPy: An Open-Source Python']Python Package for Integrative Raman Spectroscopy Data Analysis
    Georgiev, Dimitar
    Pedersen, Simon Vilms
    Xie, Ruoxiao
    Fernandez-Galiana, Alvaro
    Stevens, Molly M.
    Barahona, Mauricio
    ANALYTICAL CHEMISTRY, 2024, 96 (21) : 8492 - 8500
  • [33] Omilayers: a Python']Python package for efficient data management to support multi-omic analysis
    Kioroglou, Dimitrios
    BMC BIOINFORMATICS, 2025, 26 (01):
  • [34] MSPypeline: a python']python package for streamlined data analysis of mass spectrometry-based proteomics
    Heming, Simon
    Hansen, Pauline
    Vlasov, Artyom
    Schwoerer, Florian
    Schaumann, Stephen
    Frolovaite, Paulina
    Lehmann, Wolf-Dieter
    Timmer, Jens
    Schilling, Marcel
    Helm, Barbara
    Klingmueller, Ursula
    Bateman, Alex
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [35] scSTEM: clustering pseudotime ordered single-cell data
    Song, Qi
    Wang, Jingtao
    Bar-Joseph, Ziv
    GENOME BIOLOGY, 2022, 23 (01)
  • [36] sstar: A Python']Python Package for Detecting Archaic Introgression from Population Genetic Data with S*
    Huang, Xin
    Kruisz, Patricia
    Kuhlwilm, Martin
    MOLECULAR BIOLOGY AND EVOLUTION, 2022, 39 (11)
  • [37] WordGraph: A Python']Python Package for Reconstructing Interactive Causal Graphical Models from Text Data
    Ferdjaoui, Amine
    Affeldt, Severine
    Nadif, Mohamed
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 1046 - 1049
  • [38] PyCellBase, an efficient python']python package for easy retrieval of biological data from heterogeneous sources
    Perez-Gil, Daniel
    Lopez, Francisco J.
    Dopazo, Joaquin
    Marin-Garcia, Pablo
    Rendon, Augusto
    Medina, Ignacio
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [39] scSTEM: clustering pseudotime ordered single-cell data
    Qi Song
    Jingtao Wang
    Ziv Bar-Joseph
    Genome Biology, 23
  • [40] Unravelling spatial gene associations with SEAGAL: a Python']Python package for spatial transcriptomics data analysis and visualization
    Wang, Linhua
    Liu, Chaozhong
    Gao, Yang
    Zhang, Xiang H. -F
    Liu, Zhandong
    BIOINFORMATICS, 2023, 39 (07)