Deep learning-based modulation recognition with constellation diagram: A case study

被引:2
|
作者
Leblebici, Merih [1 ]
Calhan, Ali [2 ]
Cicioglu, Murtaza [3 ]
机构
[1] Duzce Univ, Dept Elect & Elect Engn, TR-81620 Duzce, Turkiye
[2] Duzce Univ, Dept Comp Engn, TR-81620 Duzce, Turkiye
[3] Bursa Uludag Univ, Dept Comp Engn, TR-16059 Bursa, Turkiye
关键词
Modulation recognition; Deep learning; Constellation diagram; ResNet-50; CLASSIFICATION; NETWORKS;
D O I
10.1016/j.phycom.2024.102285
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic modulation recognition is a promising solution for identifying and classifying signals received in heterogeneous wireless networks. In dynamic and autonomous environments, receivers must extract the relevant signal from various modulated signals to enable further communication procedures. Machine learning, including its sub-branches for classification problems, offers promising operational capabilities. This study utilized the ResNet-50 deep learning method for modulation classification. A dataset consisting of eight digital modulation techniques was generated, with constellation diagrams created as image data over the additive white Gaussian noise (AWGN) channel at signal-to-noise ratios (SNR) of 5 dB, 10 dB, and 20 dB. The deep learning algorithm's performance metrics were evaluated using a confusion matrix, and F1 scores were compared to those of the AlexNet deep learning algorithm. The simulation results clearly indicate the superior performance of ResNet-50 over AlexNet. In terms of average F1 scores, ResNet-50 exhibits a significant advantage, surpassing AlexNet by approximately 67%, 29%, and 10% at SNR values of 5 dB, 10 dB, and 20 dB, respectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Modulation Recognition based on Incremental Deep Learning
    Yang, Yong
    Chen, Menghan
    Wang, XiaoYa
    Ma, Piming
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1701 - 1705
  • [22] Automatic Modulation Classification Based on Constellation Density Using Deep Learning
    Kumar, Yogesh
    Sheoran, Manu
    Jajoo, Gaurav
    Yadav, Sandeep Kumar
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (06) : 1275 - 1278
  • [23] Deep Learning-Based Modulation Detection for NOMA Systems
    Xie, Wenwu
    Xiao, Jian
    Yang, Jinxia
    Wang, Ji
    Peng, Xin
    Yu, Chao
    Zhu, Peng
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (02) : 658 - 672
  • [24] Deep Learning-based Automatic Modulation Recognition Algorithm in Non-Cooperative Communication systems
    He, Zhimin
    Peng, Yang
    Zhao, Yu
    Yang, Jie
    Wang, Lei
    Zheng, Baoyu
    Gui, Guan
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [25] Visualizing Deep Learning-Based Radio Modulation Classifier
    Huang, Liang
    Zhang, You
    Pan, Weijian
    Chen, Jinyin
    Qian, Li Ping
    Wu, Yuan
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 47 - 58
  • [26] Deep Learning-Based Index Modulation for Underground Communications
    Esmaiel, Hamada
    Leftah, Hussein A.
    Junejo, Naveed Ur Rehman
    Sun, Haixin
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2023, 4 : 2122 - 2132
  • [27] Wireless Signal Recognition Based on Deep Learning for LEO Constellation Satellite
    Zhou, Xin
    Xiao, Yichen
    Hu, Mingming
    Liu, Lixiang
    SPACE INFORMATION NETWORKS, SINC 2019, 2020, 1169 : 275 - 285
  • [28] Sample Balancing for Deep Learning-Based Visual Recognition
    Chen, Xin
    Weng, Jian
    Luo, Weiqi
    Lu, Wei
    Wu, Huimin
    Xu, Jiaming
    Tian, Qi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3962 - 3976
  • [29] Deep learning-based image recognition for autonomous driving
    Fujiyoshi, Hironobu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    IATSS RESEARCH, 2019, 43 (04) : 244 - 252
  • [30] Deep Learning-based Telephony Speech Recognition in the Wild
    Han, Kyu J.
    Hahm, Seongjun
    Kim, Byung-Hak
    Kim, Jungsuk
    Lane, Ian
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 1323 - 1327