The computational complexity of classical knot recognition

被引:0
|
作者
Ichihara, Kazuhiro [1 ]
Nishimura, Yuya [2 ]
Tani, Seiichi [3 ]
机构
[1] Nihon Univ, Coll Humanities & Sci, Dept Math, 3-25-40 Sakurajosui, Tokyo, Tokyo 1568550, Japan
[2] Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-3-1 Kagamiyama, Higashi Hiroshima City, Hiroshima 7398526, Japan
[3] Nihon Univ, Coll Humanities & Sci, Dept Informat Sci, 3-25-40 Sakurajosui,Setagaya Ku, Tokyo 1568550, Japan
关键词
Virtual knots; computational complexity; algorithms; 3-MANIFOLD; ALGORITHMS; TOPOLOGY; REGINA;
D O I
10.1142/S0218216523500694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical knot recognition problem is the problem of determining whether the virtual knot represented by a given diagram is classical. We prove that this problem is in NP, and we give an exponential time algorithm for the problem.
引用
收藏
页数:68
相关论文
共 50 条
  • [21] Classical Knot Theory
    Carter, J. Scott
    SYMMETRY-BASEL, 2012, 4 (01): : 225 - 250
  • [22] Recognition of Activities in Resource Constrained Environments; Reducing the Computational Complexity
    Espinilla, M.
    Rivera, A.
    Perez-Godoy, M. D.
    Medina, J.
    Martinez, L.
    Nugent, C.
    UBIQUITOUS COMPUTING AND AMBIENT INTELLIGENCE, UCAMI 2016, PT II, 2016, 10070 : 64 - 74
  • [23] Emotional states recognition, implementing a low computational complexity strategy
    Rodriguez Aguinaga, Adrian
    Lopez Ramirez, Miguel Angel
    HEALTH INFORMATICS JOURNAL, 2018, 24 (02) : 146 - 170
  • [24] Comparison of the performance of the Gea extracorporeal knot with the Roeder extracorporeal knot and the classical knot
    Moreno, M
    Magos, FJ
    Arcovedo, R
    Olachea, P
    Palacios, JA
    Salazar, A
    Ramírez, ME
    Herrera, JJ
    SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2004, 18 (01): : 157 - 160
  • [25] The parametrized complexity of knot polynomials
    Makowsky, JA
    Mariño, JP
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 67 (04) : 742 - 756
  • [26] Classical roots of knot theory
    Przytycki, JH
    CHAOS SOLITONS & FRACTALS, 1998, 9 (4-5) : 531 - 545
  • [27] Elements of classical knot theory
    Weber, C
    INTRODUCTION TO THE GEOMETRY AND TOPOLOGY OF FLUID FLOWS, 2001, 47 : 57 - 75
  • [28] Comparison of the performance of the Gea extracorporeal knot with the Roeder extracorporeal knot and the classical knot
    M. Moreno
    F. J. Magos
    R. Arcovedo
    P. Olachea
    J. A. Palacios
    A. Salazar
    M. E. Ramírez
    J. J. Herrera
    Surgical Endoscopy And Other Interventional Techniques, 2004, 18 : 157 - 160
  • [29] Classical roots of knot theory
    George Washington Univ, Washington, United States
    Chaos Solitons Fractals, 4-5 (531-545):
  • [30] CLASSICAL KNOT AND LINK CONCORDANCE
    GILMER, P
    COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (01) : 1 - 19