Sobolev embeddings in infinite dimensions

被引:0
|
作者
Luo, Haimeng [1 ]
Zhang, Xu [2 ,3 ]
Zhao, Shiliang [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[3] Sichuan Univ, New Cornerstone Sci Lab, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Sobolev embeddings; infinite dimension; Sobolev space; Orlicz space; SEMIGROUPS; INEQUALITIES; SPACE;
D O I
10.1007/s11425-023-2174-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Sobolev spaces in infinite dimensions and the corresponding embedding theorems. Our underlying spaces are l(r) for r is an element of [1,infinity), equipped with corresponding probability measures. For the weighted Sobolev space W-b(1, p) (l(r), gamma) with a weight alpha is an element of l(r) of the Gaussian measure gamma(a) and a gradient weight b is an element of l(infinity), we characterize the relation between the weights (a and b) and the continuous (resp. compact) log-Sobolev embedding for p is an element of [1, infinity) (resp. p is an element of (1, infinity)). Several counterexamples are also constructed, which are of independent interest.
引用
收藏
页码:2157 / 2178
页数:22
相关论文
共 50 条
  • [41] An elementary proof of sharp Sobolev embeddings
    Maly, J
    Pick, LS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) : 555 - 563
  • [42] ON MAPPINGS GENERATING THE EMBEDDINGS OF SOBOLEV SPACES
    UKHLOV, AD
    SIBERIAN MATHEMATICAL JOURNAL, 1993, 34 (01) : 165 - 171
  • [43] Sobolev embeddings in grand Morrey spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2367 - 2381
  • [44] Maximal noncompactness of limiting Sobolev embeddings
    Lang, Jan
    Mihula, Zdenek
    Pick, Lubos
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [45] EMBEDDINGS AND WIDTHS OF WEIGHTED SOBOLEV CLASSES
    Vasil'eva, A. A.
    EURASIAN MATHEMATICAL JOURNAL, 2015, 6 (03): : 93 - 100
  • [46] Embeddings for spaces of Lorentz–Sobolev type
    Andreas Seeger
    Walter Trebels
    Mathematische Annalen, 2019, 373 : 1017 - 1056
  • [47] Compactness of Sobolev embeddings and decay of norms
    Lang, Jan
    Mihula, Zdenek
    Pick, Lubos
    STUDIA MATHEMATICA, 2022, 265 (01) : 1 - 36
  • [48] Sobolev type embeddings in the limiting case
    Michael Cwikel
    Evgeniy Pustylnik
    Journal of Fourier Analysis and Applications, 1998, 4 : 433 - 446
  • [49] DISCRETELY COMPACT EMBEDDINGS IN SOBOLEV SPACES
    GRIGORIEFF, RD
    MATHEMATISCHE ANNALEN, 1972, 197 (01) : 71 - +
  • [50] Optimal Sobolev embeddings - old and new
    Pick, L
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 403 - 411