共 50 条
Co-precipitation synthesis of pseudocapacitive A-MnO2 for 2D MXene (Ti3C2Tx) based asymmetric flexible supercapacitor
被引:6
|作者:
Vetrikarasan, B. Thanigai
[1
,2
]
Nair, Abhijith R.
[1
,2
]
Karthick, T.
[2
]
Shinde, Surendra K.
[3
,4
]
Kim, Dae-Young
[3
]
Sawant, Shilpa N.
[5
,6
]
Jagadale, Ajay D.
[1
,2
]
机构:
[1] SASTRA Deemed Univ, Ctr Energy Storage & Convers, Thanjavur 613401, Tamil Nadu, India
[2] SASTRA Deemed Univ, Sch Elect & Elect Engn, Dept Phys, Thanjavur 613401, Tamil Nadu, India
[3] Dongguk Univ, Coll Life Sci & Biotechnol, Dept Biol & Environm Sci, 32 Dongguk Ro,Biomed Campus, Goyang Si 10326, Gyeonggi Do, South Korea
[4] Arts Sci & Commerce Coll, Dept Phys, Pune 413106, India
[5] Bhabha Atom Res Ctr, Chem Div, Mumbai 400085, India
[6] Homi Bhabha Natl Inst, Mumbai 400094, India
关键词:
A-MnO2;
Nanoplate;
Flexible hybrid supercapacitor;
PERFORMANCE;
D O I:
10.1016/j.est.2023.108403
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
The rapid growth of wearable/portable electronics imposes a development of flexible, lightweight and highly efficient energy storage devices. In this work, we have synthesized A-MnO2 nanoplates through one step co-precipitation method and used for flexible asymmetric supercapacitor (SC). The structural, morphological and electrochemical properties of synthesized A-MnO2 were systematically investigated. The optical and electronic properties of A-MnO2 were studied using UV-vis spectroscopy and density functional theory (DFT) calculations. The pseudocapacitive A-MnO2 nanoplates-like electrode showed a maximum specific capacitance of 288.5 F g-1 at the scan rate of 5 mV s- 1. To check the practicability, symmetric (A-MnO2//A-MnO2) as well as asymmetric (A-MnO2//AC and A-MnO2//Ti3C2Tx MXene) SCs were fabricated and their performances were compared. The asymmetric A-MnO2//Ti3C2TxMXene SC demonstrated a maximum energy density of 15.5 Wh kg-1 at the power density 1100 W kg-1 along with 86.3 % of capacitive retention after 5000 cycles. Besides, to confirm the suit-ability of these electrodes for flexible energy storage, a flexible A-MnO2//Ti3C2Tx asymmetric SC was fabricated using PVA: Na2SO4 gel polymer electrolyte that operated in the potential window of 2 V and supplies high areal energy density of 39.9 & mu;Wh cm-2 at a power density of 8586 & mu;W cm-2. Therefore, the A-MnO2 prepared with a simple and scalable co-precipitation method may play a promising role in flexible energy storage.
引用
收藏
页数:12
相关论文