TI2Net: Temporal Identity Inconsistency Network for Deepfake Detection

被引:15
|
作者
Liu, Baoping [1 ]
Liu, Bo [1 ]
Ding, Ming [2 ]
Zhu, Tianqing [1 ]
Yu, Xin [1 ]
机构
[1] Univ Technol Sydney, Sydney, NSW, Australia
[2] CSIRO, Data61, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/WACV56688.2023.00467
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the Temporal Identity Inconsistency Network (TI(2)Net), a Deepfake detector that focuses on temporal identity inconsistency. Specifically, TI(2)Net recognizes fake videos by capturing the dissimilarities of human faces among video frames of the same identity. Therefore, TI(2)Net is a reference-agnostic detector and can be used on unseen datasets. For a video clip of a given identity, identity information in all frames will first be encoded to identity vectors. TI(2)Net learns the temporal identity embedding from the temporal difference of the identity vectors. The temporal embedding, representing the identity inconsistency in the video clip, is finally used to determine the authenticity of the video clip. During training, TI(2)Net incorporates triplet loss to learn more discriminative temporal embeddings. We conduct comprehensive experiments to evaluate the performance of the proposed TI(2)Net. Experimental results indicate that TI(2)Net generalizes well to unseen manipulations and datasets with unseen identities. Besides, TI(2)Net also shows robust performance against compression and additive noise.
引用
收藏
页码:4680 / 4689
页数:10
相关论文
共 50 条
  • [21] STA-Net: spatial-temporal attention network for video salient object detection
    Bi, Hong-Bo
    Lu, Di
    Zhu, Hui-Hui
    Yang, Li-Na
    Guan, Hua-Ping
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3450 - 3459
  • [22] STA-Net: spatial-temporal attention network for video salient object detection
    Hong-Bo Bi
    Di Lu
    Hui-Hui Zhu
    Li-Na Yang
    Hua-Ping Guan
    Applied Intelligence, 2021, 51 : 3450 - 3459
  • [23] TAM-Net: Temporal Enhanced Appearance-to-Motion Generative Network for Video Anomaly Detection
    Ji, Xiangli
    Li, Bairong
    Zhu, Yuesheng
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [24] Y-Net: A Multiclass Change Detection Network for Bi-temporal Remote Sensing Images
    Wang, Decheng
    Zhao, Feng
    Wang, Chao
    Wang, Haoyue
    Zheng, Fengjie
    Chen, Xiangning
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (02) : 565 - 592
  • [25] SRF-NET: SELECTIVE RECEPTIVE FIELD NETWORK FOR ANCHOR-FREE TEMPORAL ACTION DETECTION
    Ning, Ranyu
    Zhang, Can
    Zou, Yuexian
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2460 - 2464
  • [26] Detection and Defense of Identity Attacks in P2P Network
    Lu, Chuiwei
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2009, 5821 : 500 - 507
  • [27] A2Text-Net: A Novel Deep Neural Network for Sarcasm Detection
    Liut, Liyuan
    Priestleyt, Jennifer Lewis
    Zhout, Yiyun
    Rayt, Herman E.
    Han, Meng
    2019 IEEE FIRST INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2019), 2019, : 118 - 126
  • [28] R2Net: Residual refinement network for salient object detection
    Zhang, Jin
    Liang, Qiuwei
    Guo, Qianqian
    Yang, Jinyu
    Zhang, Qing
    Shi, Yanjiao
    IMAGE AND VISION COMPUTING, 2022, 120
  • [29] C2Net: a complementary co-saliency detection network
    Bi, Hongbo
    Wang, Kang
    Lu, Di
    Wu, Chenlei
    Wang, Wei
    Yang, Lina
    VISUAL COMPUTER, 2021, 37 (05): : 911 - 923
  • [30] MLM-Net: Streamlined Multi-lane Detection Network with Spatio-temporal Memory for Video Instance Lane Detection
    Wang, Xiaoqin
    Yin, Yunfei
    Huang, Faliang
    Bao, Xianjian
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 704 - 709