TI2Net: Temporal Identity Inconsistency Network for Deepfake Detection

被引:15
|
作者
Liu, Baoping [1 ]
Liu, Bo [1 ]
Ding, Ming [2 ]
Zhu, Tianqing [1 ]
Yu, Xin [1 ]
机构
[1] Univ Technol Sydney, Sydney, NSW, Australia
[2] CSIRO, Data61, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/WACV56688.2023.00467
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the Temporal Identity Inconsistency Network (TI(2)Net), a Deepfake detector that focuses on temporal identity inconsistency. Specifically, TI(2)Net recognizes fake videos by capturing the dissimilarities of human faces among video frames of the same identity. Therefore, TI(2)Net is a reference-agnostic detector and can be used on unseen datasets. For a video clip of a given identity, identity information in all frames will first be encoded to identity vectors. TI(2)Net learns the temporal identity embedding from the temporal difference of the identity vectors. The temporal embedding, representing the identity inconsistency in the video clip, is finally used to determine the authenticity of the video clip. During training, TI(2)Net incorporates triplet loss to learn more discriminative temporal embeddings. We conduct comprehensive experiments to evaluate the performance of the proposed TI(2)Net. Experimental results indicate that TI(2)Net generalizes well to unseen manipulations and datasets with unseen identities. Besides, TI(2)Net also shows robust performance against compression and additive noise.
引用
收藏
页码:4680 / 4689
页数:10
相关论文
共 50 条
  • [1] Local Region Frequency Guided Dynamic Inconsistency Network for Deepfake Video Detection
    Yue, Pengfei
    Chen, Beijing
    Fu, Zhangjie
    BIG DATA MINING AND ANALYTICS, 2024, 7 (03): : 889 - 904
  • [2] Mining Temporal Inconsistency with 3D Face Model for Deepfake Video Detection
    Cheng, Ziyi
    Chen, Chen
    Zhou, Yichao
    Hu, Xiyuan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VII, 2024, 14431 : 231 - 243
  • [3] SI-Net: spatial interaction network for deepfake detection
    Wang, Jian
    Du, Xiaoyu
    Cheng, Yu
    Sun, Yunlian
    Tang, Jinhui
    MULTIMEDIA SYSTEMS, 2023, 29 (5) : 3139 - 3150
  • [4] SI-Net: spatial interaction network for deepfake detection
    Jian Wang
    Xiaoyu Du
    Yu Cheng
    Yunlian Sun
    Jinhui Tang
    Multimedia Systems, 2023, 29 : 3139 - 3150
  • [5] Exploring Static-Dynamic ID Matching and Temporal Static ID Inconsistency for Generalizable Deepfake Detection
    She, Huimin
    Hu, Yongjian
    Liu, Beibei
    Li, Chang-Tsun
    IET BIOMETRICS, 2024, 2024
  • [6] AFMB-Net: DeepFake Detection Network Using Heart Rate Analysis
    Vinay, A.
    Bhat, Nipun
    Khurana, Paras S.
    Lakshminarayanan, Vishruth
    Nagesh, Vivek
    Natarajan, S.
    Sudarshan, T. B.
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2022, 16 (04): : 503 - 508
  • [7] Global and Temporal-Frequency Attention Based Network in Audio Deepfake Detection
    Wang C.
    Yi J.
    Tao J.
    Ma H.
    Tian Z.
    Fu R.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (07): : 1466 - 1475
  • [8] MRE-Net: Multi-Rate Excitation Network for Deepfake Video Detection
    Pang, Guilin
    Zhang, Baopeng
    Teng, Zhu
    Qi, Zige
    Fan, Jianping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 3663 - 3676
  • [9] MFF-Net: Deepfake Detection Network Based on Multi-Feature Fusion
    Zhao, Lei
    Zhang, Mingcheng
    Ding, Hongwei
    Cui, Xiaohui
    ENTROPY, 2021, 23 (12)
  • [10] Temporal Multi-View Inconsistency Detection for Network Traffic Analysis
    Xiao, Houping
    Gao, Jing
    Turaga, Deepak S.
    Vu, Long H.
    Biem, Alain
    WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2015, : 455 - 465