Intelligent fault diagnosis scheme for rotating machinery based on momentum contrastive bi-tuning framework

被引:13
|
作者
Zhong, Jiankang [1 ]
Mao, Hanling [1 ,2 ]
Tang, Weili [1 ]
Qin, Aisong [1 ]
Sun, Kuangchi [1 ,3 ]
机构
[1] Guangxi Univ, Sch Mech Engn, Nanning 530004, Peoples R China
[2] Guangxi Key Lab Mfg Syst & Adv Mfg Technol, Nanning 530004, Peoples R China
[3] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China
关键词
Intelligent fault diagnosis; Deep transfer learning; Rotating machinery; Contrastive learning; Gramian Angular Fields; BEARING;
D O I
10.1016/j.engappai.2023.106100
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing fine-tuning methods mainly leverage the discriminative knowledge and discard the intrinsic structure of data. In this paper, we propose a novel framework Momentum Contrastive Bi-Tuning (MCBiT) for intelligent diagnosis of rotating machinery, which can fully exploit both the discriminative knowledge of labels and the in-trinsic structure of target data in a boosting fine-tuning way. One-dimensional vibration signals are transformed by Gramian Angular Difference Field (GADF) and fed into MCBiT, which enhances the conventional fine-tuning by integrating two branches on the ImageNet-pretrained backbone: a classifier with an instance-contrastive cross-entropy loss to better exploit label knowledge; and a projector with a categorical contrastive learning loss to mining the intrinsic structure of data. Our proposed approach outperforms state-of-the-art methods on six publicly available rotating machinery fault diagnosis datasets and our experimental-collected dataset at different data scales. The promising performance of our proposed MCBiT contributes toward more practical data-driven approaches that can realize timely deployment under challenging real-world environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] An Intelligent Fault Diagnosis Scheme for Rotating Machinery Based on Supervised Domain Adaptation With Manifold Embedding
    Yu, Xiao
    Dong, Fei
    Xia, Bing
    Yang, Shuxin
    Ding, Enjie
    Yu, Wanli
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (01) : 953 - 972
  • [2] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [3] A new intelligent fault diagnosis framework for rotating machinery based on deep transfer reinforcement learning
    Yang, Daoguang
    Karimi, Hamid Reza
    Pawelczyk, Marek
    CONTROL ENGINEERING PRACTICE, 2023, 134
  • [4] A lifting contrastive learning method for rotating machinery fault diagnosis
    Liu, Zhuolin
    Zhang, Yan
    Huang, Qingqing
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 547 - 551
  • [5] Deep Contrastive Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhu, Peng
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [6] Intelligent fault diagnosis of rotating machinery based on impact feature extraction
    Hu A.
    Sun J.
    Xing L.
    Xiang L.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (12): : 2973 - 2981
  • [7] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [8] A rule-based intelligent method for fault diagnosis of rotating machinery
    Dou, Dongyang
    Yang, Jianguo
    Liu, Jiongtian
    Zhao, Yingkai
    KNOWLEDGE-BASED SYSTEMS, 2012, 36 : 1 - 8
  • [9] A new approach to intelligent fault diagnosis of rotating machinery
    Lei, Yaguo
    He, Zhengjia
    Zi, Yanyang
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (04) : 1593 - 1600
  • [10] A generalized fault diagnosis framework for rotating machinery based on phase entropy
    Wang, Zhenya
    Zhang, Meng
    Chen, Hui
    Li, Jinghu
    Li, Gaosong
    Zhao, Jingshan
    Yao, Ligang
    Zhang, Jun
    Chu, Fulei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 256