A new intelligent fault diagnosis framework for rotating machinery based on deep transfer reinforcement learning

被引:12
|
作者
Yang, Daoguang [1 ]
Karimi, Hamid Reza [1 ]
Pawelczyk, Marek [2 ]
机构
[1] Politecn Milan, Dept Mech Engn, Milan, Italy
[2] Silesian Tech Univ, Dept Measurements & Control Syst, Gliwice, Poland
关键词
Deep reinforcement learning; Convolutional auto-encoder; Fault diagnosis; Double deep Q network; Transfer learning; AUTO-ENCODER; DIVERGENCE; NETWORK;
D O I
10.1016/j.conengprac.2023.105475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advancement of artificial intelligence algorithms has gained growing interest in identifying the fault types in rotary machines, which is a high-efficiency but not a human-like module. Hence, in order to build a human-like fault identification module that could learn knowledge from the environment, in this paper, a deep reinforcement learning framework is proposed to provide an end-to-end training mode and a human-like learning process based on an improved Double Deep Q Network. In addition, to improve the convergence properties of the Deep Reinforcement Learning algorithm, the parameters of the former layers of the convolutional neural networks are transferred from a convolutional auto-encoder under an unsupervised learning process. The experiment results show that the proposed framework could efficiently extract the fault features from raw time-domain data and have higher accuracy than other deep learning models with balanced samples and better performance with imbalanced samples.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery
    Tang, Shengnan
    Ma, Jingtao
    Yan, Zhengqi
    Zhu, Yong
    Khoo, Boo Cheong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [2] Intelligent fault diagnosis of rotating machinery based on deep learning with feature selection
    Han, Dongying
    Liang, Kai
    Shi, Peiming
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (04) : 939 - 953
  • [3] Fault Diagnosis of Rotating Machinery Based on Deep Reinforcement Learning and Reciprocal of Smoothness Index
    Dai, Wenxin
    Mo, Zhenling
    Luo, Chong
    Jiang, Jing
    Zhang, Heng
    Miao, Qiang
    IEEE SENSORS JOURNAL, 2020, 20 (15) : 8307 - 8315
  • [4] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    MEASUREMENT, 2023, 206
  • [5] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    MEASUREMENT, 2023, 206
  • [6] Deep Learning-Based Intelligent Fault Diagnosis Methods Toward Rotating Machinery
    Tang, Shengnan
    Yuan, Shouqi
    Zhu, Yong
    IEEE ACCESS, 2020, 8 : 9335 - 9346
  • [7] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Xiang Li
    Wei Zhang
    Qian Ding
    Jian-Qiao Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 433 - 452
  • [8] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    Sun, Jian-Qiao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (02) : 433 - 452
  • [9] An autoencoder with adaptive transfer learning for intelligent fault diagnosis of rotating machinery
    Tang, Zhi
    Bo, Lin
    Liu, Xiaofeng
    Wei, Daiping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (05)
  • [10] Deep Ensemble-Based Classifier for Transfer Learning in Rotating Machinery Fault Diagnosis
    Pacheco, Fannia
    Drimus, Alin
    Duggen, Lars
    Cerrada, Mariela
    Cabrera, Diego
    Sanchez, Rene-Vinicio
    IEEE ACCESS, 2022, 10 : 29778 - 29787