Cross-section continuity of definitions of angular momentum

被引:9
|
作者
Chen, Po-Ning [1 ]
Paraizo, Daniel E. [2 ,3 ,4 ]
Wald, Robert M. [2 ,3 ]
Wang, Mu-Tao [5 ]
Wang, Ye-Kai [6 ,7 ]
Yau, Shing-Tung [8 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA USA
[2] Univ Chicago, Enrico Fermi Inst, 5640 South Ellis Ave, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Phys, 5640 South Ellis Ave, Chicago, IL 60637 USA
[4] Inst Gravitat & Cosmos, Dept Phys, University Pk, PA 16802 USA
[5] Columbia Univ, Dept Math, New York, NY USA
[6] Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
[7] Natl Ctr Theoret Sci, Taipei, Taiwan
[8] Tsinghua Univ, Dept Math, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
general relativity; angular momentum; rotations; CENTER-OF-MASS;
D O I
10.1088/1361-6382/acaa82
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a notion of "cross-section continuity' as a criterion for the viability of definitions of angular momentum, J, at null infinity: If a sequence of cross-sections, C-n, of null infinity converges uniformly to a cross-section C, then the angular momentum, J(n), on C-n should converge to the angular momentum, J, on C. The Dray-Streubel (DS) definition of angular momentum automatically satisfies this criterion by virtue of the existence of a well defined flux associated with this definition. However, we show that the one-parameter modification of the DS definition proposed by Compere and Nichols-which encompasses numerous other alternative definitions-does not satisfy cross-section continuity. On the other hand, we prove that the Chen-Wang-Yau definition does satisfy the cross-section continuity criterion.
引用
收藏
页数:11
相关论文
共 50 条