Synergistic copper nanoparticles and adjacent single atoms on biomass-derived N-doped carbon toward overall water splitting

被引:22
|
作者
Zhang, Wenjun [1 ]
Liu, Ruoqi [1 ]
Fan, Ziyi [1 ]
Wen, Huiming [1 ]
Chen, Yu [2 ]
Lin, Ronghe [3 ,4 ]
Zhu, Yinlong [5 ]
Yang, Xiaofei [1 ]
Chen, Zupeng [1 ]
机构
[1] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat F, Int Innovat Ctr Forest Chem & Mat, Nanjing 210037, Peoples R China
[2] Monash Univ, Monash Ctr Electron Microscopy, Clayton, Vic 3800, Australia
[3] Zhejiang Normal Univ, Hangzhou Inst Adv Studies, 1108 Gengwen Rd, Hangzhou 311231, Peoples R China
[4] Zhejiang Normal Univ, Key Lab Minist Educ Adv Catalysis Mat, 688 Yingbin Rd, Jinhua 321004, Zhejiang, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Inst Frontier Sci, Nanjing 210016, Peoples R China
来源
INORGANIC CHEMISTRY FRONTIERS | 2023年 / 10卷 / 02期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
OXYGEN EVOLUTION REACTION; BIFUNCTIONAL ELECTROCATALYSTS; CATALYST-SUPPORT; RECENT PROGRESS; REACTION OER; EFFICIENT; HYDROXIDE; OXIDATION; HYDROGEN; MODULATION;
D O I
10.1039/d2qi02285k
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The rational design of effective heterogeneous electrocatalysts with an appropriate electronic structure and active sites is crucial for efficient overall water splitting. Atomic-level active site manipulation can not only result in a highly efficient activity but also provide an in-depth understanding of the catalytic mechanism. Herein, we construct a synergistic copper catalyst containing single atoms and nanoparticles on biomass-derived N-doped carbon nanosheets, which provides high-density active centers and precise regulation of local environments, achieving low overpotentials of 200 mV for the oxygen evolution reaction and 216 mV for the hydrogen evolution reaction at 10 mA cm(-2), respectively. Moreover, a small cell voltage of 1.65 V is attained to achieve a current density of 10 mA cm(-2) for overall water splitting. This work provides a novel strategy for constructing a non-precious atomic-site catalyst and demonstrates the potential of precise tailoring of the structural heterogeneity for electrochemical water splitting.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 50 条
  • [41] N-Doped Carbon Nanotubes Encapsulating Ni/MoN Heterostructures Grown on Carbon Cloth for Overall Water Splitting
    Wang, Pan
    Qi, Ji
    Li, Chuang
    Chen, Xiao
    Wang, Tonghua
    Liang, Changhai
    CHEMELECTROCHEM, 2020, 7 (03): : 745 - 752
  • [42] Bagasse derived N-doped graphitic carbon encapsulated cobalt nanoparticles as an efficient bifunctional catalyst for water splitting reactions
    Kalusulingam, Rajathsing
    Ravi, Krishnan
    Mathi, Selvam
    Mikhailova, T. S.
    Srinivasan, Kannan
    V. Biradar, Ankush
    Myasoedova, T. N.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 692
  • [43] Boosting the electrocatalytic overall water splitting performance by synergistically coupling N-doped delaminated niobium carbide MXene and N-doped graphitic carbon
    Xu, Chunyan
    Wu, Fengxian
    Hu, Chun
    Yang, Liying
    Yin, Shougen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1004
  • [44] A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications
    Park, Sanghyuk
    Kim, Junghwan
    Kwon, Kyungjung
    Chemical Engineering Journal, 2022, 446
  • [45] A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications
    Park, Sanghyuk
    Kim, Junghwan
    Kwon, Kyungjung
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [46] Hollow CoP Encapsulated in an N-Doped Carbon Nanocage as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting
    Song, Xue-Zhi
    Zhao, Yu-Hang
    Yang, Wen-Bin
    Meng, Yu-Lan
    Chen, Xi
    Niu, Zan-Yao
    Wang, Xiao-Feng
    Tan, Zhenquan
    ACS APPLIED NANO MATERIALS, 2021, 4 (12) : 13450 - 13458
  • [47] Cobalt single atom anchored on N-doped carbon nanoboxes as typical single-atom catalysts (SACs) for boosting the overall water splitting
    Li, Tong
    Ren, Siyuan
    Zhang, Cheng
    Qiao, Lingxia
    Wu, Jiang
    He, Ping
    Lin, Jia
    Liu, Yongsheng
    Fu, Zaiguo
    Zhu, Qunzhi
    Pan, Weiguo
    Wang, Baofeng
    Chen, Zhongwei
    CHEMICAL ENGINEERING JOURNAL, 2023, 458 (458)
  • [48] Self-supported bifunctional electrocatalysts with Ni nanoparticles encapsulated in vertical N-doped carbon nanotube for efficient overall water splitting
    Cheng, Yu
    Guo, Haoran
    Yuan, Pengfei
    Li, Xinpan
    Zheng, Lirong
    Song, Rui
    CHEMICAL ENGINEERING JOURNAL, 2021, 413
  • [49] CoP nanoparticles encapsulated by graphitic layers and anchored to N-doped carbon nanoplates for enhanced bifunctional electrocatalytic properties for overall water splitting
    Li, Linghui
    Song, Li
    Xue, Hairong
    Jiang, Cheng
    Gao, Bin
    Gong, Hao
    Xia, Wei
    Fan, Xiaoli
    Guo, Hu
    Wang, Tao
    He, Jianping
    CARBON, 2019, 150 : 446 - 454
  • [50] Cr-Doped FeNi-P Nanoparticles Encapsulated into N-Doped Carbon Nanotube as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting
    Wu, Yiqiang
    Tao, Xu
    Qing, Yan
    Xu, Han
    Yang, Fan
    Luo, Sha
    Tian, Cuihua
    Liu, Ming
    Lu, Xihong
    ADVANCED MATERIALS, 2019, 31 (15)