Persistent pairs and connectedness in discrete Morse functions on simplicial complex I

被引:1
|
作者
Zheng, Chong [1 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Shinkuju Ku, Tokyo 1698555, Japan
关键词
Discrete Morse theory; Strong connection; Homology; Persistent pairs; Euler characteristic;
D O I
10.1016/j.topol.2024.108844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study some useful properties of persistent pairs in a discrete Morse function on a simplicial complex K. In case of dim K = 1 (i.e., a graph), by using the properties, we characterize strongly connectedness of critical simplices between two distinct discrete Morse functions, and relate the number of such pairs to the Euler characteristic of K. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] PERFECT DISCRETE MORSE FUNCTIONS ON CONNECTED SUMS
    Varli, Hanife
    Pamuk, Mehmetcik
    Kosta, Neza Mramor
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2018, 20 (01) : 219 - 236
  • [32] MORSE FUNCTIONS ON A COMPLEX - ANALYTIC MANIFOLD
    SABBAH, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (04): : 191 - 193
  • [33] Generating discrete Morse functions from point data
    King, H
    Knudson, K
    Mramor, N
    EXPERIMENTAL MATHEMATICS, 2005, 14 (04) : 435 - 444
  • [34] Perfect discrete Morse functions on 2-complexes
    Ayala, Rafael
    Fernandez-Ternero, Desamparados
    Antonio Vilches, Jose
    PATTERN RECOGNITION LETTERS, 2012, 33 (11) : 1495 - 1500
  • [35] On merge trees and discrete Morse functions on paths and trees
    Brüggemann J.
    Journal of Applied and Computational Topology, 2023, 7 (1) : 103 - 138
  • [36] Optimal discrete Morse functions for 2-manifolds
    Lewiner, T
    Lopes, H
    Tavares, G
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 26 (03): : 221 - 233
  • [37] The Persistent Morse Complex Segmentation of a 3-Manifold
    Edelsbrunner, Herbert
    Harer, John
    MODELLING THE PHYSIOLOGICAL HUMAN, 2009, 5903 : 36 - 50
  • [38] Strong Discrete Morse Theory and Simplicial L-S Category: A Discrete Version of the Lusternik-Schnirelmann Theorem
    Fernandez-Ternero, Desamparados
    Macias-Virgos, Enrique
    Scoville, Nicholas A.
    Vilches, Jose Antonio
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 63 (03) : 607 - 623
  • [39] DENSITY OF MORSE FUNCTIONS ON A COMPLEX-SPACE
    BENEDETTI, R
    MATHEMATISCHE ANNALEN, 1977, 229 (02) : 135 - 139
  • [40] Topologically-consistent simplification of discrete Morse complex
    Iuricich, Federico
    Fugacci, Ulderico
    De Floriani, Leila
    COMPUTERS & GRAPHICS-UK, 2015, 51 : 157 - 166