Comparison of MRI radiomics-based machine learning survival models in predicting prognosis of glioblastoma multiforme

被引:2
|
作者
Zhang, Di [1 ]
Luan, Jixin [2 ,3 ]
Liu, Bing [2 ,3 ]
Yang, Aocai [2 ,3 ]
Lv, Kuan [4 ]
Hu, Pianpian [4 ]
Han, Xiaowei [5 ]
Yu, Hongwei [3 ]
Shmuel, Amir [6 ,7 ]
Ma, Guolin [3 ]
Zhang, Chuanchen [1 ]
机构
[1] Shandong First Med Univ & Shandong Acad Med Sci, Liaocheng Peoples Hosp, Dept Radiol, Liaocheng, Shandong, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, China Japan Friendship Hosp, Inst Clin Med Sci, Beijing, Peoples R China
[3] China Japan Friendship Hosp, Dept Radiol, Beijing, Peoples R China
[4] Peking Univ, China Japan Friendship Sch Clin Med, Beijing, Peoples R China
[5] Nanjing Univ, Affiliated Drum Tower Hosp, Med Sch, Dept Radiol, Nanjing, Peoples R China
[6] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[7] McGill Univ, Dept Neurol & Neurosurg, Montreal, PQ, Canada
基金
中国国家自然科学基金;
关键词
glioblastoma multiforme; radiomics; machine learning; survival models; prognosis;
D O I
10.3389/fmed.2023.1271687
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectiveTo compare the performance of radiomics-based machine learning survival models in predicting the prognosis of glioblastoma multiforme (GBM) patients.Methods131 GBM patients were included in our study. The traditional Cox proportional-hazards (CoxPH) model and four machine learning models (SurvivalTree, Random survival forest (RSF), DeepSurv, DeepHit) were constructed, and the performance of the five models was evaluated using the C-index.ResultsAfter the screening, 1792 radiomics features were obtained. Seven radiomics features with the strongest relationship with prognosis were obtained following the application of the least absolute shrinkage and selection operator (LASSO) regression. The CoxPH model demonstrated that age (HR = 1.576, p = 0.037), Karnofsky performance status (KPS) score (HR = 1.890, p = 0.006), radiomics risk score (HR = 3.497, p = 0.001), and radiomics risk level (HR = 1.572, p = 0.043) were associated with poorer prognosis. The DeepSurv model performed the best among the five models, obtaining C-index of 0.882 and 0.732 for the training and test set, respectively. The performances of the other four models were lower: CoxPH (0.663 training set / 0.635 test set), SurvivalTree (0.702/0.655), RSF (0.735/0.667), DeepHit (0.608/0.560).ConclusionThis study confirmed the superior performance of deep learning algorithms based on radiomics relative to the traditional method in predicting the overall survival of GBM patients; specifically, the DeepSurv model showed the best predictive ability.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A radiomics-based model for predicting prognosis of locally advanced gastric cancer in the preoperative setting
    Jaeseung Shin
    Joon Seok Lim
    Yong-Min Huh
    Jie-Hyun Kim
    Woo Jin Hyung
    Jae-Joon Chung
    Kyunghwa Han
    Sungwon Kim
    Scientific Reports, 11
  • [42] Predicting survival in glioblastoma with multimodal neuroimaging and machine learning
    Patrick H. Luckett
    Michael Olufawo
    Bidhan Lamichhane
    Ki Yun Park
    Donna Dierker
    Gabriel Trevino Verastegui
    Peter Yang
    Albert H. Kim
    Milan G. Chheda
    Abraham Z. Snyder
    Joshua S. Shimony
    Eric C. Leuthardt
    Journal of Neuro-Oncology, 2023, 164 (2) : 309 - 320
  • [43] Differentiation between Germinoma and Craniopharyngioma Using Radiomics-Based Machine Learning
    Chen, Boran
    Chen, Chaoyue
    Zhang, Yang
    Huang, Zhouyang
    Wang, Haoran
    Li, Ruoyu
    Xu, Jianguo
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (01):
  • [44] MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities
    Gitto, Salvatore
    Interlenghi, Matteo
    Cuocolo, Renato
    Salvatore, Christian
    Giannetta, Vincenzo
    Badalyan, Julietta
    Gallazzi, Enrico
    Spinelli, Maria Silvia
    Gallazzi, Mauro
    Serpi, Francesca
    Messina, Carmelo
    Albano, Domenico
    Annovazzi, Alessio
    Anelli, Vincenzo
    Baldi, Jacopo
    Aliprandi, Alberto
    Armiraglio, Elisabetta
    Parafioriti, Antonina
    Daolio, Primo Andrea
    Luzzati, Alessandro
    Biagini, Roberto
    Castiglioni, Isabella
    Sconfienza, Luca Maria
    RADIOLOGIA MEDICA, 2023, 128 (08): : 989 - 998
  • [45] Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach
    Peng Yuling
    Zheng Yineng
    Tan Zeyun
    Liu Junhang
    Xiang Yayun
    Liu Huan
    Dai Linquan
    Xie Yanjun
    Wang Jingjie
    Zeng Chun
    Li, Yongmei
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2021, 53
  • [46] Radiomics-based machine learning models in STEMI: a promising tool for the prediction of major adverse cardiac events
    Emine Sebnem Durmaz
    Mert Karabacak
    Burak Berksu Ozkara
    Osman Aykan Kargın
    Utku Raimoglu
    Hasan Tokdil
    Eser Durmaz
    Ibrahim Adaletli
    European Radiology, 2023, 33 : 4611 - 4620
  • [47] MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities
    Salvatore Gitto
    Matteo Interlenghi
    Renato Cuocolo
    Christian Salvatore
    Vincenzo Giannetta
    Julietta Badalyan
    Enrico Gallazzi
    Maria Silvia Spinelli
    Mauro Gallazzi
    Francesca Serpi
    Carmelo Messina
    Domenico Albano
    Alessio Annovazzi
    Vincenzo Anelli
    Jacopo Baldi
    Alberto Aliprandi
    Elisabetta Armiraglio
    Antonina Parafioriti
    Primo Andrea Daolio
    Alessandro Luzzati
    Roberto Biagini
    Isabella Castiglioni
    Luca Maria Sconfienza
    La radiologia medica, 2023, 128 : 989 - 998
  • [48] Radiomics-based machine learning models in STEMI: a promising tool for the prediction of major adverse cardiac events
    Durmaz, Emine Sebnem
    Karabacak, Mert
    Ozkara, Burak Berksu
    Kargin, Osman Aykan
    Raimoglu, Utku
    Tokdil, Hasan
    Durmaz, Eser
    Adaletli, Ibrahim
    EUROPEAN RADIOLOGY, 2023, 33 (07) : 4611 - 4620
  • [49] Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics
    Sarv Priya
    Yanan Liu
    Caitlin Ward
    Nam H. Le
    Neetu Soni
    Ravishankar Pillenahalli Maheshwarappa
    Varun Monga
    Honghai Zhang
    Milan Sonka
    Girish Bathla
    Scientific Reports, 11
  • [50] Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics
    Priya, Sarv
    Liu, Yanan
    Ward, Caitlin
    Le, Nam H.
    Soni, Neetu
    Maheshwarappa, Ravishankar Pillenahalli
    Monga, Varun
    Zhang, Honghai
    Sonka, Milan
    Bathla, Girish
    SCIENTIFIC REPORTS, 2021, 11 (01)