Optimization of the Cutting Parameters Affecting the Turning of AISI 52100 Bearing Steel Using the Box-Behnken Experimental Design Method

被引:5
|
作者
Yildiz, Aytac [1 ]
Ugur, Levent [2 ]
Parlak, Ismail Enes [1 ]
机构
[1] Bursa Tech Univ, Fac Engn & Nat Sci, Dept Ind Engn, TR-16330 Bursa, Turkiye
[2] Amasya Univ, Fac Engn, Dept Mech Engn, TR-05100 Amasya, Turkiye
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 01期
关键词
AISI; 52100; response surface method; cutting parameters; FEM analysis; RESPONSE-SURFACE METHODOLOGY; WEDM PROCESS PARAMETERS; TOOL WEAR; MULTIOBJECTIVE OPTIMIZATION; MACHINING PARAMETERS; ENERGY-CONSUMPTION; ROUGHNESS; FORCES; MACHINABILITY; PERFORMANCE;
D O I
10.3390/app13010003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we aimed to optimize the cutting parameters that affect the minimum temperature and power consumption in the turning of AISI 52100 bearing steel. For this, the Box-Behnken experimental design method, which was used for the lowest number of experiments in the experimental systems created using the response surface method (RSM), was used. The cutting parameters affecting the turning of the AISI 52100 bearing steel were determined as the cutting speed, depth of cut, and feed rate based on a literature research. The temperature and power consumption values were obtained via analyses according to the experimental design method determined by the finite element analysis (FEM) method. The results obtained were analyzed in Design Expert 13 software. According to the analysis results, the parameter values were determined for the minimum temperature and power consumption. The temperature and power consumption variables were affected by all three parameters, namely the cutting speed, depth of cut, and feed rate. For the minimum temperature and power consumption, a cutting speed of 162.427 m/min, depth of cut of 1.395 mm, and feed rate of 0.247 mm/rev, as well as the feed rate parameters, affected both the temperature and power consumption the most. In addition, it was determined that the cutting speed parameter had the least effect on both the temperature and power consumption variables. In addition, validation experiments were carried out in a real experimental environment with optimum values for the cutting parameters. The results showed that the output values obtained within the limits of the study with the obtained equation were quite close (3.3% error for temperature, 6.6% error for power consumption) to the real experimental outputs.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Assessment and optimization of cutting parameters while turning AISI 52100 steel
    Sharma, Vishal S.
    Dhiman, Suresh
    Sehgal, Rakesh
    Sharma, Surinder Kumar
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2008, 9 (02) : 54 - 62
  • [2] Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel
    Serra, R.
    Chibane, H.
    Duchosal, A.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 99 (5-8): : 2025 - 2034
  • [3] Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel
    R. Serra
    H. Chibane
    A. Duchosal
    The International Journal of Advanced Manufacturing Technology, 2018, 99 : 2025 - 2034
  • [4] Design optimization of cutting parameters for turning of AISI 304 austenitic stainless steel using Taguchi method
    Kulkarni, Atul
    Joshi, Girish
    Sargade, V. G.
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2013, 20 (04) : 252 - 258
  • [5] Optimization of TIG welding process parameters on chrome alloy steel using Box-Behnken method
    Gugulothu, Bhiksha
    Karumuri, Srikanth
    Vijayakumar, S.
    Muthuvel, B.
    Seetharaman, Suresh
    Jeyakrishnan, S.
    Saxena, Kuldeep K.
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, 18 (09): : 6725 - 6737
  • [6] Optimization of Adsorption Parameters for Ultra-Fine Calcite Using a Box-Behnken Experimental Design
    Ucurum, Metin
    Ozdemir, Akin
    Teke, Cagatay
    Serencam, Huseyin
    Ipek, Mumtaz
    OPEN CHEMISTRY, 2018, 16 (01): : 992 - 1000
  • [7] Optimization of the Experimental Conditions for the Stability of Nanofluids Using Box-Behnken Design
    Ma, Lin
    Yu, Zhiqiang
    Qing, Shan
    Liu, Yingchun
    Li, Zengen
    Gui, Zhao
    Zhang, Aimin
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (11) : 1724 - 1730
  • [8] Optimization of operating parameters of graphite flotation circuit using box-behnken design
    Oney, Ozcan
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2018, 25 (02) : 170 - 178
  • [9] Optimization of Operating Parameters for Flotation of Fine Coal Using a Box-Behnken Design
    Oney, Ozcan
    Samanli, Selcuk
    Celik, Haluk
    Tayyar, Nezih
    INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2015, 35 (05) : 233 - 246
  • [10] Optimization of process parameters for electrochemical nitrate removal using Box-Behnken design
    Li, Miao
    Feng, Chuanping
    Zhang, Zhenya
    Chen, Rongzhi
    Xue, Qiang
    Gao, Chengjie
    Sugiura, Norio
    ELECTROCHIMICA ACTA, 2010, 56 (01) : 265 - 270