MACFNet: multi-attention complementary fusion network for image denoising

被引:1
|
作者
Yu, Jiaolong [1 ]
Zhang, Juan [1 ]
Gao, Yongbin [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China
关键词
Image denoising; Convolutional neural network; Multi-attention mechanism; Complementary fusion; TRANSFORM; SPARSE; CNN;
D O I
10.1007/s10489-022-04313-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent years, thanks to the prosperous development of deep convolutional neural network, image denoising task has achieved unprecedented achievements. However, previous researches have difficulties in keeping the balance between noise removing and textual details preserving, even bringing the negative effect, such as local blurring. To overcome these weaknesses, in this paper, we propose an innovative multi-attention complementary fusion network (MACFNet) to restore delicate texture details while eliminating noise to the greatest extent. To be specific, our proposed MACFNet mainly composes of several multi-attention complementary fusion modules (MACFMs). Firstly, we use feature extraction block (FEB) to extract basic features.Then, we use spatial attention (SA), channel attention (CA) and patch attention (PA) three different kinds of attention mechanisms to extract spatial-dimensional, channel-dimensional and patch-dimensional attention aware features, respectively. In addition, we attempt to integrate three attention mechanisms in an effective way. Instead of directly concatenate, we design a subtle complementary fusion block (CFB), which is skilled in incorporating three sub-branches characteristics adaptively. Extensive experiments are carried out on gray-scale image denoising, color image denoising and real noisy image denoising. The quantitative results (PSNR) and visual effects all prove that our proposed network achieves great performance over some state-of-the-art methods.
引用
收藏
页码:16747 / 16761
页数:15
相关论文
共 50 条
  • [31] Double-Branch Multi-Attention Mechanism Network for Hyperspectral Image Classification
    Ma, Wenping
    Yang, Qifan
    Wu, Yue
    Zhao, Wei
    Zhang, Xiangrong
    REMOTE SENSING, 2019, 11 (11)
  • [32] Remote Sensing Image Segmentation of Around Plateau Lakes Based on Multi-Attention Fusion
    He Z.-F.
    Shi B.-J.
    Zhang Y.-H.
    Li S.-M.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (04): : 885 - 895
  • [33] Grouped Multi-Attention Network for Hyperspectral Image Spectral-Spatial Classification
    Lu, Ting
    Liu, Mengkai
    Fu, Wei
    Kang, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [34] Gated Multi-Attention Feedback Network for Medical Image Super-Resolution
    Shang, Jianrun
    Zhang, Xue
    Zhang, Guisheng
    Song, Wenhao
    Chen, Jinyong
    Li, Qilei
    Gao, Mingliang
    ELECTRONICS, 2022, 11 (21)
  • [35] An Unmixing-Based Multi-Attention GAN for Unsupervised Hyperspectral and Multispectral Image Fusion
    Su, Lijuan
    Sui, Yuxiao
    Yuan, Yan
    REMOTE SENSING, 2023, 15 (04)
  • [36] Graph Attention in Attention Network for Image Denoising
    Jiang, Bo
    Lu, Yao
    Chen, Xiaosheng
    Lu, Xinhai
    Lu, Guangming
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (11): : 7077 - 7088
  • [37] Multi-attention Network for One Shot Learning
    Wang, Peng
    Liu, Lingqiao
    Shen, Chunhua
    Huang, Zi
    van den Hengel, Anton
    Shen, Heng Tao
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6212 - 6220
  • [38] A Multi-Attention Network with Multi-Level Spatial-Spectral Feature Fusion Based on Band Selection for Hyperspectral Image Classification
    Liu, Yi (yiliuxd@foxmail.com), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [39] MAXFormer: Enhanced transformer for medical image segmentation with multi-attention and multi-scale features fusion
    Liang, Zhiwei
    Zhao, Kui
    Liang, Gang
    Li, Siyu
    Wu, Yifei
    Zhou, Yiping
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [40] Siamese Tracking Network with Multi-attention Mechanism
    Xu, Yuzhuo
    Li, Ting
    Zhu, Bing
    Wang, Fasheng
    Sun, Fuming
    NEURAL PROCESSING LETTERS, 2024, 56 (05)