MACFNet: multi-attention complementary fusion network for image denoising

被引:1
|
作者
Yu, Jiaolong [1 ]
Zhang, Juan [1 ]
Gao, Yongbin [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China
关键词
Image denoising; Convolutional neural network; Multi-attention mechanism; Complementary fusion; TRANSFORM; SPARSE; CNN;
D O I
10.1007/s10489-022-04313-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent years, thanks to the prosperous development of deep convolutional neural network, image denoising task has achieved unprecedented achievements. However, previous researches have difficulties in keeping the balance between noise removing and textual details preserving, even bringing the negative effect, such as local blurring. To overcome these weaknesses, in this paper, we propose an innovative multi-attention complementary fusion network (MACFNet) to restore delicate texture details while eliminating noise to the greatest extent. To be specific, our proposed MACFNet mainly composes of several multi-attention complementary fusion modules (MACFMs). Firstly, we use feature extraction block (FEB) to extract basic features.Then, we use spatial attention (SA), channel attention (CA) and patch attention (PA) three different kinds of attention mechanisms to extract spatial-dimensional, channel-dimensional and patch-dimensional attention aware features, respectively. In addition, we attempt to integrate three attention mechanisms in an effective way. Instead of directly concatenate, we design a subtle complementary fusion block (CFB), which is skilled in incorporating three sub-branches characteristics adaptively. Extensive experiments are carried out on gray-scale image denoising, color image denoising and real noisy image denoising. The quantitative results (PSNR) and visual effects all prove that our proposed network achieves great performance over some state-of-the-art methods.
引用
收藏
页码:16747 / 16761
页数:15
相关论文
共 50 条
  • [1] MACFNet: multi-attention complementary fusion network for image denoising
    Jiaolong Yu
    Juan Zhang
    Yongbin Gao
    Applied Intelligence, 2023, 53 : 16747 - 16761
  • [2] MAFUNet: Multi-Attention Fusion Network for Medical Image Segmentation
    Wang, Lili
    Zhao, Jiayu
    Yang, Hailu
    IEEE ACCESS, 2023, 11 : 109793 - 109802
  • [3] Multi-Attention Ghost Residual Fusion Network for Image Classification
    Jia, Xiaofen
    Du, Shengjie
    Guo, Yongcun
    Huang, Yourui
    Zhao, Baiting
    IEEE ACCESS, 2021, 9 : 81421 - 81431
  • [4] Fusion of ConvLSTM and Multi-Attention Mechanism Network for Hyperspectral Image Classification
    Tang Ting
    Xin, Pan
    Luo Xiao-ling
    Gao Xiao-jing
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (08) : 2608 - 2616
  • [5] MMPDNet: Multi-Stage & Multi-Attention Progressive Image Denoising
    Xue, Jiangbo
    Liang, Jiu
    Zhang, Yu
    He, Jinhe
    Hu, Yanda
    20TH INT CONF ON UBIQUITOUS COMP AND COMMUNICAT (IUCC) / 20TH INT CONF ON COMP AND INFORMATION TECHNOLOGY (CIT) / 4TH INT CONF ON DATA SCIENCE AND COMPUTATIONAL INTELLIGENCE (DSCI) / 11TH INT CONF ON SMART COMPUTING, NETWORKING, AND SERV (SMARTCNS), 2021, : 467 - 473
  • [6] RED-MAM: A residual encoder-decoder network based on multi-attention fusion for ultrasound image denoising
    LI, Yancheng
    Zeng, Xianhua
    Dong, Qian
    Wang, Xinyu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [7] Single Image Super Resolution via Multi-Attention Fusion Recurrent Network
    Kou, Qiqi
    Cheng, Deqiang
    Zhang, Haoxiang
    Liu, Jingjing
    Guo, Xin
    Jiang, He
    IEEE ACCESS, 2023, 11 : 98653 - 98665
  • [8] A multi-attention Uformer for low-dose CT image denoising
    Huimin Yan
    Chenyun Fang
    Zhiwei Qiao
    Signal, Image and Video Processing, 2024, 18 : 1429 - 1442
  • [9] A multi-attention Uformer for low-dose CT image denoising
    Yan, Huimin
    Fang, Chenyun
    Qiao, Zhiwei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1429 - 1442
  • [10] Multi-Attention Generative Adversarial Network for image captioning
    Wei, Yiwei
    Wang, Leiquan
    Cao, Haiwen
    Shao, Mingwen
    Wu, Chunlei
    NEUROCOMPUTING, 2020, 387 : 91 - 99