Topological magnon-polaron transport in a bilayer van der Waals magnet

被引:2
|
作者
Lin, Zhi-Xing [1 ]
Zhang, Shu [2 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Max Planck Inst Phys Komplexer Syst, Dresden, Germany
关键词
TRANSITION; INSULATOR; EXCITATIONS; CRYSTAL; FIELD; MAGNETIZATION; FECL2;
D O I
10.1063/5.0191253
中图分类号
O59 [应用物理学];
学科分类号
摘要
The stacking of intrinsically magnetic van der Waals materials provides a fertile platform to explore tunable transport effects of magnons, presenting significant prospects for spintronic applications. The possibility of having topologically nontrivial magnons in these systems can further expand the scope of exploration. In this work, we consider a bilayer system with intralayer ferromagnetic exchange and a weak interlayer antiferromagnetic exchange and study the topological magnon-polaron excitations induced by magnetoelastic couplings. Under an applied magnetic field, the system features a metamagnetic transition, where the magnetic ground state changes from antiparallel layers to parallel. We show that the metamagnetic transition is accompanied by a transition of the topological structure of the magnon polarons, which results in discernible changes in the topology induced transport effects. The magnetic-field dependence of the thermal Hall conductivity and spin Nernst coefficient is analyzed with linear response theories.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Magnon-exciton proximity coupling at a van der Waals heterointerface
    Gloppe, A.
    Onga, M.
    Hisatomi, R.
    Imamoglu, A.
    Nakamura, Y.
    Iwasa, Y.
    Usami, K.
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [32] Topological interlayer superconductivity in a van der Waals heterostructure
    Thingstad, Even
    Hutchinson, Joel
    Loss, Daniel
    Klinovaja, Jelena
    PHYSICAL REVIEW B, 2025, 111 (06)
  • [33] Magnon polarons in the van der Waals antiferromagnet FePS3
    Vaclavkova, D.
    Palit, M.
    Wyzula, J.
    Ghosh, S.
    Delhomme, A.
    Maity, S.
    Kapuscinski, P.
    Ghosh, A.
    Veis, M.
    Grzeszczyk, M.
    Faugeras, C.
    Orlita, M.
    Datta, S.
    Potemski, M.
    PHYSICAL REVIEW B, 2021, 104 (13)
  • [34] Efficient Optical Control of Magnon Dynamics in van der Waals Ferromagnets
    Gong, Yu
    Yang, Zhonghua
    Teklu, Alem
    Xie, Ti
    Kern, Noah
    May, Andrew F.
    McGuire, Michael
    Brennan, Christian
    Guo, Er-Jia
    Kuthirummal, Narayanan
    Cetin, John
    Zhang, Qian
    Hu, Ming
    Gong, Cheng
    ULTRAFAST SCIENCE, 2024, 4
  • [35] Fermi polaron fine structure in strained van der Waals heterostructures
    Iakovlev, Z. A.
    Glazov, M. M.
    2D MATERIALS, 2023, 10 (03)
  • [36] Laser-induced topological spin switching in a 2D van der Waals magnet
    Khela, Maya
    Dabrowski, Maciej
    Khan, Safe
    Keatley, Paul S.
    Verzhbitskiy, Ivan
    Eda, Goki
    Hicken, Robert J.
    Kurebayashi, Hidekazu
    Santos, Elton J. G.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [37] Laser-induced topological spin switching in a 2D van der Waals magnet
    Maya Khela
    Maciej Da̧browski
    Safe Khan
    Paul S. Keatley
    Ivan Verzhbitskiy
    Goki Eda
    Robert J. Hicken
    Hidekazu Kurebayashi
    Elton J. G. Santos
    Nature Communications, 14
  • [38] Aqueous Gating of van der Waals Materials on Bilayer Nanopaper
    Bao, Wenzhong
    Fang, Zhiqiang
    Wan, Jiayu
    Dai, Jiaqi
    Zhu, Hongli
    Han, Xiaogang
    Yang, Xiaofeng
    Preston, Colin
    Hu, Liangbing
    ACS NANO, 2014, 8 (10) : 10606 - 10612
  • [39] Electric manipulation of magnetism in bilayer van der Waals magnets
    Sun, Yu-Yun
    Zhu, Liang-Qing
    Li, Zhongyao
    Ju, Weiwei
    Gong, Shi-Jing
    Wang, Ji-Qing
    Chu, Jun-Hao
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (20)
  • [40] Semiconducting triferroic multiferroics in van der Waals bilayer lattice
    Chai, Shuyan
    Wu, Qian
    Zhang, Ting
    Zhang, Guangping
    Dai, Ying
    Huang, Baibiao
    Ma, Yandong
    PHYSICAL REVIEW APPLIED, 2024, 22 (02):