Learning to Shape by Grinding: Cutting-Surface-Aware Model-Based Reinforcement Learning

被引:2
|
作者
Hachimine, Takumi [1 ]
Morimoto, Jun [2 ,3 ]
Matsubara, Takamitsu [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Sci & Technol, Div Informat Sci, Nara 6300192, Japan
[2] Kyoto Univ, Grad Sch Informat, Dept Syst Sci, Kyoto 6068501, Japan
[3] Adv Telecommun Res Inst Int ATR, Brain Informat Commun Res Lab Grp BICR, Kyoto 6190288, Japan
关键词
Manipulation planning; model learning for control; reinforcement learning; OBJECTS;
D O I
10.1109/LRA.2023.3303721
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Object shaping by grinding is a crucial industrial process in which a rotating grinding belt removes material. Object-shape transition models are essential to achieving automation by robots; however, learning such a complex model that depends on process conditions is challenging because it requires a significant amount of data, and the irreversible nature of the removal process makes data collection expensive. This letter proposes a cutting-surface-aware Model-Based Reinforcement Learning (MBRL) method for robotic grinding. Our method employs a cutting-surface-aware model as the object's shape transition model, which in turn is composed of a geometric cutting model and a cutting-surface-deviation model, based on the assumption that the robot action can specify the cutting surface made by the tool. Furthermore, according to the grinding resistance theory, the cutting-surface-deviation model does not require raw shape information, making the model's dimensions smaller and easier to learn than a naive shape transition model directly mapping the shapes. Through evaluation and comparison by simulation and real robot experiments, we confirm that our MBRL method can achieve high data efficiency for learning object shaping by grinding and also provide generalization capability for initial and target shapes that differ from the training data.
引用
收藏
页码:6235 / 6242
页数:8
相关论文
共 50 条
  • [31] Modeling Survival in model-based Reinforcement Learning
    Moazami, Saeed
    Doerschuk, Peggy
    2020 SECOND INTERNATIONAL CONFERENCE ON TRANSDISCIPLINARY AI (TRANSAI 2020), 2020, : 17 - 24
  • [32] Adaptive Discretization for Model-Based Reinforcement Learning
    Sinclair, Sean R.
    Wang, Tianyu
    Jain, Gauri
    Banerjee, Siddhartha
    Yu, Christina Lee
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [33] Model-based average reward reinforcement learning
    Tadepalli, P
    Ok, D
    ARTIFICIAL INTELLIGENCE, 1998, 100 (1-2) : 177 - 224
  • [34] Continual Model-Based Reinforcement Learning with Hypernetworks
    Huang, Yizhou
    Xie, Kevin
    Bharadhwaj, Homanga
    Shkurti, Florian
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 799 - 805
  • [35] Model-based Reinforcement Learning and the Eluder Dimension
    Osband, Ian
    Van Roy, Benjamin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [36] Model-Based Reinforcement Learning in Robotics: A Survey
    Sun S.
    Lan X.
    Zhang H.
    Zheng N.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (01): : 1 - 16
  • [37] MOReL: Model-Based Offline Reinforcement Learning
    Kidambi, Rahul
    Rajeswaran, Aravind
    Netrapalli, Praneeth
    Joachims, Thorsten
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [38] Model-Based Reinforcement Learning With Isolated Imaginations
    Pan, Minting
    Zhu, Xiangming
    Zheng, Yitao
    Wang, Yunbo
    Yang, Xiaokang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 2788 - 2803
  • [39] Consistency of Fuzzy Model-Based Reinforcement Learning
    Busoniu, Lucian
    Ernst, Damien
    De Schutter, Bart
    Babuska, Robert
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 518 - +
  • [40] Asynchronous Methods for Model-Based Reinforcement Learning
    Zhang, Yunzhi
    Clavera, Ignasi
    Tsai, Boren
    Abbeel, Pieter
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100