A Method of Chestnut Forest Identification Based on Time Series and Key Phenology from Sentinel-2

被引:2
|
作者
Xiong, Nina [1 ,2 ,3 ,4 ]
Chen, Hailong [5 ]
Li, Ruiping [5 ]
Su, Huimin [5 ]
Dai, Shouzheng [5 ]
Wang, Jia [1 ,2 ]
机构
[1] Beijing Forestry Univ, Beijing Key Lab Precis Forestry, 35 Qinghua East Rd,Box 111, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Inst GIS RS & GNSS, 35 Qinghua East Rd, Beijing 100083, Peoples R China
[3] Beijing Municipal Inst City Management, Management Res Dept, Jia 48 Shangjialou, Beijing 100028, Peoples R China
[4] Beijing Municipal Inst City Management, Beijing Key Lab Municipal Solid Wastes Testing Ana, Jia 48 Shangjialou, Beijing 100028, Peoples R China
[5] PIESAT Informat Technol Co Ltd, Beijing 100195, Peoples R China
基金
中国国家自然科学基金;
关键词
chestnut; Google Earth Engine; Sentinel-2; time series analysis; machine learning; multi-phase combination recognition; GOOGLE EARTH ENGINE; VEGETATION; IMAGERY; INDEX; RECOGNITION; MAP;
D O I
10.3390/rs15225374
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chestnut trees hold a prominent position in China as an economically significant forest species, offering both high economic value and ecological advantages. Identifying the distribution of chestnut forests is of paramount importance for enhancing efficient management practices. Presently, many studies are employing remote sensing imaging methods to monitor tree species. However, in comparison to the common classification of land cover types, the accuracy of tree species identification is relatively lower. This study focuses on accurately mapping the distribution of planted chestnut forests in China, particularly in the Huairou and Miyun regions, which are the main producing areas for Yanshan chestnuts in northeastern Beijing. We utilized the Google Earth Engine (GEE) cloud platform and Sentinel-2 satellite imagery to develop a method based on vegetation phenological features. This method involved identifying three distinct phenological periods of chestnut trees: flowering, fruiting, and dormancy, and extracting relevant spectral, vegetation, and terrain features. With these features, we further established and compared three machine learning algorithms for chestnut species identification: random forest (RF), decision tree (DT), and support vector machine (SVM). Our results indicated that the recognition accuracy of these algorithms ranked in descending order as RF > DT > SVM. We found that combining multiple phenological characteristics significantly improved the accuracy of chestnut forest distribution identification. Using the random forest algorithm and Sentinel-2 phenological features, we achieved an impressive overall accuracy (OA) of 98.78%, a Kappa coefficient of 0.9851, and a user's accuracy (UA) and producer's accuracy (PA) of 97.25% and 98.75%, respectively, for chestnut identification. When compared to field surveys and official area statistics, our method exhibited an accuracy rate of 89.59%. The implementation of this method not only offers crucial data support for soil erosion prevention and control studies in Beijing but also serves as a valuable reference for future research endeavors in this field.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Phenology Modelling and Forest Disturbance Mapping with Sentinel-2 Time Series in Austria
    Low, Markus
    Koukal, Tatjana
    REMOTE SENSING, 2020, 12 (24) : 1 - 27
  • [2] Corn Phenology Detection Using the Derivative Dynamic Time Warping Method and Sentinel-2 Time Series
    Ye, Junyan
    Bao, Wenhao
    Liao, Chunhua
    Chen, Dairong
    Hu, Haoxuan
    REMOTE SENSING, 2023, 15 (14)
  • [3] Delineation of Orchard, Vineyard, and Olive Trees Based on Phenology Metrics Derived from Time Series of Sentinel-2
    Abubakar, Mukhtar Adamu
    Chanzy, Andre
    Flamain, Fabrice
    Pouget, Guillaume
    Courault, Dominique
    REMOTE SENSING, 2023, 15 (09)
  • [4] A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images
    Ashourloo, Davoud
    Nematollahi, Hamed
    Huete, Alfredo
    Aghighi, Hossein
    Azadbakht, Mohsen
    Shahrabi, Hamid Salehi
    Goodarzdashti, Salman
    REMOTE SENSING OF ENVIRONMENT, 2022, 280
  • [5] IMPROVING FOREST SPECIES MAPPING USING SENTINEL-2 TIME SERIES
    Chehata, Nesrine
    Chakroun, Media
    Youssfi, Rania
    Maaoui, Mohamed Amine
    Manai, Anis
    Werhani, Rami
    Aloui, Kamel
    Kouki, Nizar
    Talhaoui, Wafa
    Sahli, Thouraya
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 227 - 230
  • [6] Forest Stand Species Mapping Using the Sentinel-2 Time Series
    Grabska, Ewa
    Hostert, Patrick
    Pflugmacher, Dirk
    Ostapowicz, Katarzyna
    REMOTE SENSING, 2019, 11 (10)
  • [7] LAI TIME SERIES RECONSTRUCTION FROM SENTINEL-2 IMAGERY USING VEGETATION GROWING PHENOLOGY FEATURE
    Peng, Naijie
    Yang, Siqi
    Tao, Yunzhu
    Zhai, Dechao
    Fan, Wenjie
    Liu, Qiang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3046 - 3049
  • [8] Sentinel-2 time series: a promising tool in monitoring temperate species spring phenology
    Grabska-Szwagrzyk, Ewa
    Tyminska-Czabanska, Luiza
    FORESTRY, 2023, 97 (02): : 267 - 281
  • [9] Improved Estimates of Arctic Land Surface Phenology Using Sentinel-2 Time Series
    Descals, Adria
    Verger, Aleixandre
    Yin, Gaofei
    Penuelas, Josep
    REMOTE SENSING, 2020, 12 (22) : 1 - 13
  • [10] Sentinel-2 Time Series Analysis for Identification of Underutilized Land in Europe
    Sobe, Carina
    Hirschmugl, Manuela
    Wimmer, Andreas
    REMOTE SENSING, 2021, 13 (23)