Identifying individual jaguars from camera-trap images using the HotSpotter program

被引:0
|
作者
Wiig, Oystein [1 ]
da Silva Teixeira, Karollyna [2 ]
Sena, Leonardo [3 ]
de Oliveira, Halicia Celeste Santos [2 ]
Mendes-Oliveira, Ana Cristina [2 ]
机构
[1] Univ Oslo, Nat Hist Museum, POB 1172 Blindern, NO-0318 Oslo, Norway
[2] Fed Univ Para, Inst Biol Sci, Lab Ecol & Zool Vertebrates LABEV, Belem, PA, Brazil
[3] Fed Univ Para, Biol Sci Inst, Ctr Adv Biodivers Studies Ceabio, Belem, PA, Brazil
关键词
camera-trap; HotSpotter; individual identification; jaguars; Panthera onca;
D O I
10.1515/mammalia-2023-0071
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
We identified individual jaguars from a database of camera-trap images collected in the Eastern Amazonian rainforest using the artificial intelligence software HotSpotter. We identified individuals from 131 of 217 images. Twenty-five different individuals were identified based on images of the left side. We compared our results with the results from an undergraduate study that manually identified 18 jaguar individuals from 53 images also used in the present study. One of the 18 individuals was found to be misclassified based on HotSpotter. We found HotSpotter to be useful in identifying individual jaguars in our study area.
引用
收藏
页码:602 / 605
页数:4
相关论文
共 50 条
  • [41] Investigating avian behaviour using opportunistic camera-trap imagery reveals an untapped data source
    Vaughan, Peter M.
    Buettel, Jessie C.
    Brook, Barry W.
    ORNITHOLOGICAL SCIENCE, 2022, 21 (01) : 3 - 12
  • [42] An evidence-based approach to identifying resting sites of Eurasian otter Lutra lutra from camera-trap and field-sign data
    Findlay, Melanie A.
    Briers, Robert A.
    Ingledew, Roger P.
    White, Patrick J. C.
    WILDLIFE BIOLOGY, 2023, 2023 (01)
  • [43] ESTIMATING TIGER PANTHERA-TIGRIS POPULATIONS FROM CAMERA-TRAP DATA USING CAPTURE-RECAPTURE MODELS
    KARANTH, KU
    BIOLOGICAL CONSERVATION, 1995, 71 (03) : 333 - 338
  • [44] Declining planetary health as a driver of camera-trap studies: Insights from the web of science database
    Dhakal, Thakur
    Kim, Tae-Su
    Kim, Seong-Hyeon
    Tiwari, Shraddha
    Woo, Seung-Hyun
    Lee, Do-Hun
    Jang, Gab-Sue
    ECOLOGICAL INFORMATICS, 2024, 83
  • [45] Carolina critters: a collection of camera-trap data from wildlife surveys across North Carolina
    Lasky, Monica
    Parsons, Arielle W.
    Schuttler, Stephanie G.
    Hess, George
    Sutherland, Ron
    Kalies, Liz
    Clark, Staci
    Olfenbuttel, Colleen
    Matthews, Jessie
    Clark, James S.
    Siminitz, Jordan
    Davis, George
    Shaw, Jonathan
    Dukes, Casey
    Hill, Jacob
    Kays, Roland
    ECOLOGY, 2021, 102 (07)
  • [46] Towards Automatic Wild Animal Detection in Low Quality Camera-trap Images Using Two-channeled Perceiving Residual Pyramid Networks
    Zhu, Chunbiao
    Li, Thomas H.
    Li, Ge
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2860 - 2864
  • [47] Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies
    Gardner, Beth
    Reppucci, Juan
    Lucherini, Mauro
    Royle, J. Andrew
    ECOLOGY, 2010, 91 (11) : 3376 - 3383
  • [48] Animal movement affects interpretation of occupancy models from camera-trap surveys of unmarked animals
    Neilson, Eric W.
    Avgar, Tal
    Burton, A. Cole
    Broadley, Kate
    Boutin, Stan
    ECOSPHERE, 2018, 9 (01):
  • [49] Monitoring Landscape-Level Distribution and Migration Phenology of Raptors Using a Volunteer Camera-Trap Network
    Jachowski, David S.
    Katzner, Todd
    Rodrigue, Jane L.
    Ford, W. Mark
    WILDLIFE SOCIETY BULLETIN, 2015, 39 (03): : 553 - 563
  • [50] Day and night camera trap videos are effective for identifying individual wild Asian elephants
    Montero-De La Torre, Sasha
    Jacobson, Sarah L.
    Chodorow, Martin
    Yindee, Marnoch
    Plotnik, Joshua M.
    PEERJ, 2023, 11