Structural mechanism of mitochondrial membrane remodelling by human OPA1

被引:29
|
作者
von der Malsburg, Alexander [1 ]
Sapp, Gracie M. [2 ]
Zuccaro, Kelly E. [2 ]
von Appen, Alexander [3 ,4 ]
Moss, Frank R. [3 ,5 ]
Kalia, Raghav [6 ]
Bennett, Jeremy A. [2 ]
Abriata, Luciano A. [7 ,8 ,9 ]
Dal Peraro, Matteo [7 ,9 ]
van der Laan, Martin [1 ]
Frost, Adam [3 ,5 ,10 ,11 ]
Aydin, Halil [2 ]
机构
[1] Saarland Univ, Ctr Mol Signaling, Med Biochem & Mol Biol, PZMS,Med Sch, Homburg, Germany
[2] Univ Colorado Boulder, Dept Biochem, Boulder, CO 80309 USA
[3] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94118 USA
[4] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[5] Altos Labs Bay Area Inst Sci, San Francisco, CA 92121 USA
[6] Univ Calif San Francisco, Dept Physiol, San Francisco, CA USA
[7] Ecole Polytech Fed Lausanne, Inst Bioengn, Sch Life Sci, Lausanne, Switzerland
[8] Ecole Polytech Fed Lausanne, Sch Life Sci, Prot Prod & Struct Core Facil, Lausanne, Switzerland
[9] Swiss Inst Bioinformat, Lausanne, Switzerland
[10] Chan Zuckerberg Biohub, San Francisco, CA USA
[11] Univ Calif San Francisco, Quantitat Biosci Inst, San Francisco, CA 94143 USA
关键词
DOMINANT OPTIC ATROPHY; CYTOCHROME-C RELEASE; PROTEIN; DYNAMIN; FUSION; SOFTWARE; GTPASE; VISUALIZATION; CONSERVATION; HYDROLYSIS;
D O I
10.1038/s41586-023-06441-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain, and OPA1 oligomerization through multiple assembly interfaces promotes the helical assembly of a flexible OPA1 lattice on the membrane, driving mitochondrial fusion in cells.
引用
收藏
页码:1101 / 1108
页数:33
相关论文
共 50 条
  • [41] OPA1 requires mitofusin-1 to promote mitochondrial fusion
    Cipolat, S
    de Brito, OM
    Dal Zilio, B
    Scorrano, L
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1658 : 38 - 38
  • [43] Mitochondrial membrane potential and oxidative stress interact to regulate Oma1-dependent processing of Opa1 and mitochondrial dynamics
    Fogo, Garrett M.
    Raghunayakula, Sarita
    Emaus, Katlynn J.
    Torres, Francisco J. Torres
    Wider, Joseph M.
    Sanderson, Thomas H.
    FASEB JOURNAL, 2024, 38 (18):
  • [44] OPA1 DEFICIENCY CAUSES CARDIAC MITOCHONDRIAL DYSFUNCTION AND ALTERED MITOCHONDRIAL MORPHOLOGY
    Parker, William
    Streeter, Jennifer
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 434 - 434
  • [45] Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology
    Duvezin-Caubet, Stephane
    Jagasia, Ravi
    Wagener, Johannes
    Hofmann, Sabine
    Trifunovic, Aleksandra
    Hansson, Anna
    Chomyn, Anne
    Bauer, Matthias F.
    Attardi, Giuseppe
    Larsson, Nils-Goeran
    Neupert, Walter
    Reichert, Andreas S.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (49) : 37972 - 37979
  • [46] OPA1 helical structures give perspective to mitochondrial dysfunction
    Nyenhuis, Sarah B.
    Wu, Xufeng
    Strub, Marie-Paule
    Yim, Yang-In
    Stanton, Abigail E.
    Baena, Valentina
    Syed, Zulfeqhar A.
    Canagarajah, Bertram
    Hammer, John A.
    Hinshaw, Jenny E.
    NATURE, 2023, 620 (7976) : 1109 - 1116
  • [47] OPA1 and MICOS Regulate mitochondrial crista dynamics and formation
    Chao Hu
    Li Shu
    Xiaoshuai Huang
    Jianglong Yu
    liuju Li
    Longlong Gong
    Meigui Yang
    Zhida Wu
    Zhi Gao
    Yungang Zhao
    Liangyi Chen
    Zhiyin Song
    Cell Death & Disease, 11
  • [48] Mitochondrial disorder with OPA1 mutation lacking optic atrophy
    Milone, Margherita
    Younge, Brian R.
    Wang, Jing
    Zhang, Shulin
    Wong, Lee-Jun
    MITOCHONDRION, 2009, 9 (04) : 279 - 281
  • [49] OPA1 in Lipid Metabolism: Function of OPA1 in Lipolysis and Thermogenesis of Adipocytes
    Chu, Dinh-Toi
    Tao, Yang
    Tasken, Kjetil
    HORMONE AND METABOLIC RESEARCH, 2017, 49 (04) : 276 - 285
  • [50] Proteolytic Cleavage of Opa1 Stimulates Mitochondrial Inner Membrane Fusion and Couples Fusion to Oxidative Phosphorylation
    Mishra, Prashant
    Carelli, Valerio
    Manfredi, Giovanni
    Chan, David C.
    CELL METABOLISM, 2014, 19 (04) : 630 - 641