Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors

被引:28
|
作者
Bergmann, Paul [1 ]
Sattlegger, David [2 ]
机构
[1] Tech Univ Munich, MVTec Software GmbH, Munich, Germany
[2] MVTec Software GmbH, Munich, Germany
关键词
SURFACE;
D O I
10.1109/WACV56688.2023.00264
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new method for the unsupervised detection of geometric anomalies in high-resolution 3D point clouds. In particular, we propose an adaptation of the established student-teacher anomaly detection framework to three dimensions. A student network is trained to match the output of a pretrained teacher network on anomaly-free point clouds. When applied to test data, regression errors between the teacher and the student allow reliable localization of anomalous structures. To construct an expressive teacher network that extracts dense local geometric descriptors, we introduce a novel self-supervised pretraining strategy. The teacher is trained by reconstructing local receptive fields and does not require annotations. Extensive experiments on the comprehensive MVTec 3D Anomaly Detection dataset highlight the effectiveness of our approach, which outperforms the existing methods by a large margin. Ablation studies show that our approach meets the requirements of practical applications regarding performance, runtime, and memory consumption.
引用
收藏
页码:2612 / 2622
页数:11
相关论文
共 50 条
  • [21] Deep Learning for 3D Point Clouds: A Survey
    Guo, Yulan
    Wang, Hanyun
    Hu, Qingyong
    Liu, Hao
    Liu, Li
    Bennamoun, Mohammed
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4338 - 4364
  • [22] Change Detection in Point Clouds Using 3D Fractal Dimension
    Casas-Rosa, Juan C.
    Navarro, Pablo
    Segura-Sanchez, Rafael J.
    Rueda-Ruiz, Antonio J.
    Lopez-Ruiz, Alfonso
    Fuertes, Jose M.
    Delrieux, Claudio
    Ogayar-Anguita, Carlos J.
    REMOTE SENSING, 2024, 16 (06)
  • [23] Edge Detection in 3D Point Clouds Using Digital Images
    Dolapsaki, Maria Melina
    Georgopoulos, Andreas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (04)
  • [24] Damage Detection of the RC Building in TLS Point Clouds Using 3D Deep Neural Network
    Shao W.
    Kakizaki K.
    Araki S.
    Mukai T.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2023, 89 (01): : 70 - 76
  • [25] 3D Point Cloud Enhancement using Unsupervised Anomaly Detection
    Regaya, Yousra
    Fadli, Fodil
    Amira, Abbes
    2019 5TH IEEE INTERNATIONAL SYMPOSIUM ON SYSTEMS ENGINEERING (IEEE ISSE 2019), 2019,
  • [26] Completing 3D point clouds of individual trees using deep learning
    Bornand, Aline
    Abegg, Meinrad
    Morsdorf, Felix
    Rehush, Nataliia
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (11): : 2010 - 2023
  • [27] A Survey on Deep Learning Based Segmentation, Detection and Classification for 3D Point Clouds
    Vinodkumar, Prasoon Kumar
    Karabulut, Dogus
    Avots, Egils
    Ozcinar, Cagri
    Anbarjafari, Gholamreza
    ENTROPY, 2023, 25 (04)
  • [28] Evaluation of 3D Feature Descriptors for Classification of Surface Geometries in Point Clouds
    Arbeiter, Georg
    Fuchs, Steffen
    Bormann, Richard
    Fischer, Jan
    Verl, Alexander
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 1644 - 1650
  • [29] A Staircase Detection Method for 3D Point Clouds
    Sinha, Arnab
    Papadakis, Panagiotis
    Elara, Mohan Rajesh
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 652 - 656
  • [30] Contour detection in unstructured 3D point clouds
    Hackel, Timo
    Wegner, Jan D.
    Schindler, Konrad
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1610 - 1618