Fracture features of brittle coal under uniaxial and cyclic compression loads

被引:21
|
作者
Song, Shikang [1 ]
Ren, Ting [2 ]
Dou, Linming [3 ]
Sun, Jian [4 ]
Yang, Xiaohan [5 ]
Tan, Lihai [2 ,3 ]
机构
[1] Shaanxi Zhengtong Coal Ind Co Ltd, Xianyang 713600, Peoples R China
[2] Univ Wollongong, Sch Civil Min & Environm Engn, Wollongong 2522, Australia
[3] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Xuzhou 221116, Peoples R China
[4] Anhui Univ Sci & Technol, Sch Energy & Safety Engn, Huainan 232001, Peoples R China
[5] Univ Queensland, Sch Civil Engn, Brisbane 4072, Australia
关键词
Fracture; Crack; Coal burst; Acoustic emission; Computed tomography; ENERGY-DISSIPATION; ACOUSTIC-EMISSION; DAMAGE; ROCK; BEHAVIOR; FAILURE; RELEASE; BURSTS;
D O I
10.1007/s40789-023-00564-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Under the effects of complex geological and stress environments, burst hazards continue to be a major challenge for underground space utilization and deep resources exploration as its occurrence can lead to personnel causalities, equipment damage and structural collapse. Considering the stress path experienced by in-situ coal body, cyclic loading appears in quite various forms for instance shearer cutting, overlying strata breakage, hydro-fracturing and blasting, during tunnel, mining and underground space utilizing process. The stability of the underground coal body subject to periodic loading/unloading stress is extremely important for maintain the function of designed engineering structure for waste storage, safe mining, roadway development, gas recovery, carbon sequestration and so on. The mechanical properties of hard rock subject to cyclic fatigue loads has been intensively investigated by many researchers as the rock burst induced by supercritical loads has long been a safety risk and engineering problems for civil and tunneling engineering under deep overburden. More recently, the mechanical properties of coal samples under cyclic fatigue loads is investigated from the aspect of hysteresis, energy dissipation and irreversible damage as the burst hazards of brittle coal is rising in many countries. However, the crack propagation and fracture pattern of brittle coal need more research to understand the micro mechanism of burst incubation subject to cyclic fatigue loads as brittle coal can store more elastic strain energy and rapidly release the energy when its ultimate strength once reached. This research studied the internal crack status corresponding to different cyclic fatigue loading stage of brittle coal samples. The AE monitoring was applied during the uniaxial and cyclic loading process of brittle coal samples to record the crack intensity of samples at different loading stages. The damage evolution curve corresponding to loading status was then determined. The fracture pattern of coal samples determined by micro-CT scan was observed and discussed. It has been found by this paper that brittle coal of uniaxial compression tests demonstrated sudden failure caused by major splitting fracture while that of cyclic fatigue tests experienced progressive failure with mixture fracture network.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] End and shape effects of brittle rock under uniaxial compression
    Gao, Min
    Liang, Zhengzhao
    Li, Yingchun
    Wu, Xiankai
    Zhang, Meili
    ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (20)
  • [32] The ultrasonic properties of brittle rocks with microcracks under uniaxial compression
    Zhao, MJ
    Wu, DL
    PROCEEDINGS IN MINING SCIENCE AND SAFETY TECHNOLOGY, 2002, : 197 - 205
  • [33] A microcrack damage model for brittle rocks under uniaxial compression
    Zhou, J. W.
    Xu, W. Y.
    Yang, X. G.
    MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (04) : 399 - 405
  • [34] The ultrasonic properties of brittle rocks with microcracks under uniaxial compression
    Zhao, Mingjie
    Wu, Delun
    Proceedings in Mining Science and Safety Technology, 2002, : 197 - 205
  • [35] Evolution of pore-fracture structure and permeability of coal by microwave irradiation under uniaxial compression
    Yang, Nan
    Hu, Guozhong
    Zhu, Jian
    Duan, Haoran
    Wang, Tonghui
    Li, Yifan
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2022, 107
  • [36] Fracture evolution of coal under uniaxial compression based on X-ray microscopic imaging
    Yang Q.
    Yu Y.
    Cui W.
    Gao C.
    Zhang X.
    Shen J.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2023, 51 (04): : 88 - 95
  • [37] Mechanical Responses of a Porous Red Sandstone to Quasi-Static Cyclic Loads Under Uniaxial Compression
    Zheng, Zhao-Qiang
    Liu, Huai-Zhong
    Xie, Hong-Qiang
    He, Jiang-Da
    Xiao, Ming-Li
    Zhuo, Li
    ROCK MECHANICS AND ROCK ENGINEERING, 2024, 57 (05) : 3219 - 3236
  • [38] Mechanical Responses of a Porous Red Sandstone to Quasi-Static Cyclic Loads Under Uniaxial Compression
    Zhao-Qiang Zheng
    Huai-Zhong Liu
    Hong-Qiang Xie
    Jiang-Da He
    Ming-Li Xiao
    Li Zhuo
    Rock Mechanics and Rock Engineering, 2024, 57 : 3219 - 3236
  • [39] Experimental study on spectrum characteristic of AE during brittle rock fracture under uniaxial compression based on Welch
    Wu, Xianzhen
    Liu, Jianwei
    Liu, Hongxing
    Liu, Xiangxin
    RESOURCES AND SUSTAINABLE DEVELOPMENT, PTS 1-4, 2013, 734-737 : 751 - +
  • [40] Two-phase model for the investigation of micro-fracture mechanism of brittle rock under uniaxial compression
    Chen, F
    Sun, ZQ
    Xu, JC
    Zhang, JY
    FRONTIERS OF ROCK MECHANICS AND SUSTAINABLE DEVELOPMENT IN THE 21ST CENTURY, 2001, : 299 - 301