In situ synthesis of CoFe-LDH on biochar for peroxymonosulfate activation toward sulfamethoxazole degradation: cooperation of radical and non-radical pathways

被引:10
|
作者
Fu, Manjun [1 ]
Yan, Juntao [1 ]
Chai, Bo [1 ]
Fan, Guozhi [1 ]
Ding, Deng [1 ]
Song, Guangsen [1 ]
机构
[1] Wuhan Polytech Univ, Sch Chem & Environm Engn, Wuhan 430023, Peoples R China
关键词
HETEROGENEOUS ACTIVATION; CATALYTIC DEGRADATION; HIGHLY EFFICIENT; HYDROXIDE; PERFORMANCE; NANOSHEET; IRON;
D O I
10.1039/d2nj05132j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing an efficient, low-cost and stable catalyst to activate peroxymonosulfate (PMS) for pollutant degradation is crucial in environmental remediation. Herein, Co1Fe1 layered double hydroxide (Co1Fe1-LDH) was in situ loaded on biochar (BC) derived from rape straw for sulfamethoxazole (SMX) degradation via activating PMS. It could be found that the optimal catalyst (BC/Co1Fe1-LDH-4) exhibited the highest SMX degradation efficiency of 94.8% within 5 min reaction, far more than pristine Co1Fe1-LDH (58.5%), which might be ascribed to the synergistic effects between Co1Fe1-LDH and BC during the reaction. For one thing, BC itself participated in the catalytic degradation reaction as an activator and made the catalyst have excellent adsorption and degradation performance. For another, BC as a carrier not only effectively inhibited the agglomeration of Co1Fe1-LDH to increase the active sites, but also accelerated the Co2+/Co3+ and Fe2+/Fe3+ cycles to reduce the leaching of metal ions. Meanwhile the leaching of trace metal ions also promoted the degradation of SMX to a certain extent, indicating that the catalytic mechanism was a combination of homogeneous and heterogeneous catalysis, and the latter was dominant. The quenching trials, electron paramagnetic resonance (EPR) and electrochemical measurements implied that the radical and non-radical processes were involved in the reaction, where SO4-, OH and O-2(-) were the main radical species to drive the radical process, and O-1(2) and direct electron transfer were responsible for the non-radical process. In addition, the possible SMX degradation pathways were reasonably proposed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) tests and the SMX mineralization degree was provided through total organic carbon (TOC) measurements. This present work provides new insight into the construction of highly efficient PMS activation catalysts for environmental wastewater treatment.
引用
收藏
页码:4018 / 4032
页数:15
相关论文
共 50 条
  • [21] O2 plasma-modified carbon nanotube for sulfamethoxazole degradation via peroxymonosulfate activation: Synergism of radical and non-radical pathways boosting water decontamination and detoxification
    Liu S.
    Zhang Z.
    Lu R.
    Mao Y.
    Ge H.
    Liu C.
    Tian C.
    Yin S.
    Feng L.
    Liu Y.
    Chen C.
    Zhang L.
    Chemosphere, 2023, 344
  • [22] Recycling chestnut shell for superior peroxymonosulfate activation in contaminants degradation via the synergistic radical/non-radical mechanisms
    Zhao, Lu
    Zhang, Hanlin
    Dai, Zhipeng
    Zhang, Ai-Yong
    Yin, Jiao
    Peng, Shuchuan
    Liang, Heng
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 430
  • [23] Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer
    Ye, Shujing
    Zeng, Guangming
    Tan, Xiaofei
    Wu, Haipeng
    Liang, Jie
    Song, Biao
    Tang, Ning
    Zhang, Peng
    Yang, Yuanyuan
    Chen, Qiang
    Li, Xiaopei
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 269
  • [24] Successive non-radical and radical process of peroxymonosulfate-based oxidation using various activation methods for enhancing mineralization of sulfamethoxazole
    Wang, Shizong
    Wang, Jianlong
    CHEMOSPHERE, 2021, 263
  • [25] Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer
    Ye, Shujing
    Zeng, Guangming
    Tan, Xiaofei
    Wu, Haipeng
    Liang, Jie
    Song, Biao
    Tang, Ning
    Zhang, Peng
    Yang, Yuanyuan
    Chen, Qiang
    Li, Xiaopei
    Zeng, Guangming (zgming@hnu.edu.cn), 1600, Elsevier B.V., Netherlands (269):
  • [26] Activation of peroxymonosulfate by MnFe2O4@BC composite for bisphenol A Degradation: The coexisting of free-radical and non-radical pathways
    Xu, Siyu
    Wen, Liangtao
    Yu, Chen
    Li, Song
    Tang, Jingchun
    CHEMICAL ENGINEERING JOURNAL, 2022, 442
  • [27] Non-radical activation of peroxymonosulfate with oxygen vacancy-rich amorphous MnOX for removing sulfamethoxazole in water
    Xie, Lan
    Hao, Jiajia
    Wu, Yinsu
    Xing, Shengtao
    CHEMICAL ENGINEERING JOURNAL, 2022, 436
  • [28] Effects of Lewis acid-base site and oxygen vacancy in MgAl minerals on peroxymonosulfate activation towards sulfamethoxazole degradation via radical and non-radical mechanism
    Tian, Chen
    Dai, Chu
    Tian, Xike
    Nie, Yulun
    Yang, Chao
    Li, Yong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 286
  • [29] β-FeOOH catalyzed peroxymonosulfate for organic pollutant degradation in water: radical and non-radical mechanism
    Lyu, Cong
    Ju, Lunan
    Yang, Xuejiao
    Song, Lan
    Liu, Ning
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (06) : 4797 - 4807
  • [30] Heparan sulfate degradation by HOCI via radical and non-radical pathways
    Rees, M
    Davies, M
    FREE RADICAL BIOLOGY AND MEDICINE, 2005, 39 : S129 - S130