One-step multifunctional surface modification strategy enhancing cycling performance of Li-rich cathodes for lithium-ion batteries

被引:4
|
作者
Li, Ao [1 ]
Qian, Can [1 ,2 ]
Mao, Guihong [1 ]
Liu, Zhao [2 ]
Li, Zhixiong [2 ,5 ]
Zhang, Yujia [2 ,6 ]
Yin, Liang [3 ,4 ,7 ]
Shen, Laifa [1 ]
Li, Hong [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Engn, Jiangsu Key Lab Electrochem Energy Storage Technol, Nanjing 211106, Peoples R China
[2] Tianmu Lake Inst Adv Energy Storage Technol Co Ltd, Liyang 213300, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Yangtze River Delta Phys Res Ctr, Liyang 213300, Peoples R China
[5] Univ Sci & Technol China, Nano Sci & Technol Inst, Hefei 230026, Peoples R China
[6] Henan Univ, Int Joint Res Lab New Energy Mat & Devices Henan P, Kaifeng 475004, Peoples R China
[7] Nanjing Univ Aeronaut & Astronaut, Nanjing 211106, Peoples R China
基金
国家重点研发计划;
关键词
Lithium-rich layered oxides; Residual lithium; Surface modification;
D O I
10.1016/j.jpowsour.2024.234245
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium -rich layered oxides (LROs) possess enormous potential in the new generation of high-energy lithium -ion batteries due to their high specific capacity, working voltage, and low cost. However, they still face low initial coulombic efficiency, poor cycling stability and multiplication performance, and persistent voltage decay, which seriously hinder their development in the lithium -ion battery industry. In this article, the Li1.4Y0.4Ti1.6(PO4)3 ionic conductive layer is constructed on the surface of LROs using surface residuals as lithium sources. Such a one-step modification method not only improves the rate performance of LROs by enhanced kinetic property of Li+, but also elongates the cycling lives at high -temp and high -rates by the inhibition of interfacial side reactions. As a result, the LRO cathode with a high initial coulombic efficiency of 89.3% and a good capacity retention of
引用
收藏
页数:10
相关论文
共 50 条
  • [31] On the functionality of the polypyrrole nanostructures for surface modification of Co-free Li-rich layered oxide cathode applied in lithium-ion batteries
    Vahdatkhah, Parisa
    Sadrnezhaad, Sayed Khatiboleslam
    Voznyy, Oleksandr
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 914
  • [32] Improved cycling performance of CeO2-inlaid Li-rich cathode materials for lithium-ion battery
    Hu, Guorong
    Xue, Zhichen
    Luo, Zhongyuan
    Peng, Zhongdong
    Cao, Yanbing
    Wang, Weigang
    Zeng, Yuexi
    Huang, Yong
    Tao, Yong
    Li, Tianfan
    Zhang, Zhiyong
    Du, Ke
    CERAMICS INTERNATIONAL, 2019, 45 (08) : 10633 - 10639
  • [33] One-Step Integrated Surface Modification To Build a Stable Interface on High-Voltage Cathode for Lithium-Ion Batteries
    Zhao, Rui
    Li, Li
    Xu, Tinghua
    Wang, Dandan
    Pan, Du
    He, Guanjie
    Zhao, Huiling
    Bai, Ying
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (17) : 16233 - 16242
  • [34] Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries
    An, Juan
    Shi, Liyi
    Chen, Guorong
    Li, Musen
    Liu, Hongjiang
    Yuan, Shuai
    Chen, Shimou
    Zhang, Dengsong
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) : 19738 - 19744
  • [35] A Li-rich strategy towards advanced Mn-doped triphylite cathodes for Li-ion batteries
    Nazarov, Eugene E.
    Dembitskiy, Artem D.
    Trussov, Ivan A.
    Tyablikov, Oleg A.
    Glazkova, Iana S.
    Alexey, Sobolev V.
    Presniakov, Igor A.
    Morozov, Anatolii V.
    Mikheev, Ivan V.
    Nikitina, Victoria A.
    Abakumov, Artem M.
    Antipov, Evgeny V.
    Fedotov, Stanislav S.
    ENERGY ADVANCES, 2023, 2 (02): : 328 - 337
  • [36] Investigation on capacity decay of Li-rich LNMCO cathode material for lithium-ion batteries
    Guo, Fuling
    Chen, Wangchao
    Yang, Zhichao
    Shi, Chengwu
    Zhou, Zhuohang
    SYNTHETIC METALS, 2019, 258
  • [37] A new Li-rich layered cathode with low lattice strain for lithium-ion batteries
    Ke, Bingyu
    Chu, Shiyong
    Li, Jing-Chang
    Xu, Xiangqun
    Yao, Huan
    Guo, Shaohua
    Zhou, Haoshen
    CHEMICAL COMMUNICATIONS, 2022, 58 (75) : 10488 - 10491
  • [38] A high rate Li-rich layered MNC cathode material for lithium-ion batteries
    Ates, Mehmet Nurullah
    Mukerjee, Sanjeev
    Abraham, K. M.
    RSC ADVANCES, 2015, 5 (35): : 27375 - 27386
  • [39] Doping Strategy in Developing Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries
    Lee, Soo-Been
    Park, Nam-Yung
    Park, Geon-Tae
    Kim, Un-Hyuck
    Sohn, Sung-June
    Kang, Min-Seok
    Ribas, Rogerio M.
    Monteiro, Robson S.
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2024, 9 (02) : 740 - 747
  • [40] Suppressing Mn Reduction of Li-Rich Mn-Based Cathodes by F-Doping for Advanced Lithium-Ion Batteries
    Wang, Yong
    Gu, Hai-Tao
    Song, Jin-Hua
    Feng, Zhen-He
    Zhou, Xin-Bin
    Zhou, Yong-Ning
    Wang, Ke
    Xie, Jing-Ying
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (49): : 27836 - 27842