Trends and advances in silk based 3D printing/bioprinting towards cartilage tissue engineering and regeneration

被引:0
|
作者
Singh, Yogendra Pratap [1 ]
Bandyopadhyay, Ashutosh [1 ]
Dey, Souradeep [3 ]
Bhardwaj, Nandana [2 ]
Mandal, Biman B. [1 ,3 ,4 ]
机构
[1] Indian Inst Technol Guwahati, Dept Biosci & Bioengn, Biomat & Tissue Engn Lab, Gauhati 781039, Assam, India
[2] Indian Inst Informat Technol Guwahati, Dept Sci & Math, Gauhati 781015, Assam, India
[3] Indian Inst Technol Guwahati, Ctr Nanotechnol, Gauhati 781039, Assam, India
[4] Indian Inst Technol Guwahati, Jyoti & Bhupat Mehta Sch Hlth Sci & Technol, Gauhati 781039, Assam, India
来源
PROGRESS IN BIOMEDICAL ENGINEERING | 2024年 / 6卷 / 02期
关键词
bioprinting; cartilage; silk fibroin; bioink; tissue engineering; biomaterial ink; NON-MULBERRY SILK; ARTICULAR-CARTILAGE; IN-VITRO; FIBROIN GENE; HYDROGEL; PROTEIN; MATRIX; SUBPOPULATIONS; PROLIFERATION; STERILIZATION;
D O I
10.1088/2516-1091/ad2d59
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cartilage repair remains a significant clinical challenge in orthopedics due to its limited self- regeneration potential and often progresses to osteoarthritis which reduces the quality of life. 3D printing/bioprinting has received vast attention in biofabrication of functional tissue substitutes due to its ability to develop complex structures such as zonally structured cartilage and osteochondral tissue as per patient specifications with precise biomimetic control. Towards a suitable bioink development for 3D printing/bioprinting, silk fibroin has garnered much attention due to its advantageous characteristics such as shear thinning behavior, cytocompatibility, good printability, structural fidelity, affordability, and ease of availability and processing. This review attempts to provide an overview of current trends/strategies and recent advancements in utilizing silk-based bioinks/biomaterial-inks for cartilage bioprinting. Herein, the development of silk-based bioinks/biomaterial-inks, its components and the associated challenges, along with different bioprinting techniques have been elaborated and reviewed. Furthermore, the applications of silk-based bioinks/biomaterial-inks in cartilage repair followed by challenges and future directions are discussed towards its clinical translations and production of next-generation biological implants.
引用
下载
收藏
页数:22
相关论文
共 50 条
  • [41] Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering
    Yu, JunJie
    Park, Su A.
    Kim, Wan Doo
    Ha, Taeho
    Xin, Yuan-Zhu
    Lee, JunHee
    Lee, Donghyun
    POLYMERS, 2020, 12 (12) : 1 - 30
  • [42] Current progresses of 3D bioprinting based tissue engineering
    Zeyu Zhang
    XiuJie Wang
    Quantitative Biology, 2017, 5 (02) : 136 - 142
  • [43] Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications
    Zennifer, Allen
    Senthilvelan, Praseetha
    Sethuraman, Swaminathan
    Sundaramurthi, Dhakshinamoorthy
    CARBOHYDRATE POLYMERS, 2021, 256
  • [44] A Study of the Printability of Alginate-Based Bioinks by 3D Bioprinting for Articular Cartilage Tissue Engineering
    Gorronogoitia, Izar
    Urtaza, Uzuri
    Zubiarrain-Laserna, Ana
    Alonso-Varona, Ana
    Zaldua, Ane Miren
    POLYMERS, 2022, 14 (02)
  • [45] Tissue engineering by decellularization and 3D bioprinting
    Garreta, Elena
    Oria, Roger
    Tarantino, Carolina
    Pla-Roca, Mateu
    Prado, Patricia
    Fernandez-Aviles, Francisco
    Maria Campistol, Josep
    Samitier, Josep
    Montserrat, Nuria
    MATERIALS TODAY, 2017, 20 (04) : 166 - 178
  • [46] 3D bioprinting in cardiac tissue engineering
    Wang, Zihan
    Wang, Ling
    Li, Ting
    Liu, Sitian
    Guo, Baolin
    Huang, Wenhua
    Wu, Yaobin
    THERANOSTICS, 2021, 11 (16): : 7948 - 7969
  • [47] Hydrocolloids for tissue engineering and 3D bioprinting
    Yildirim-Semerci, Ozum
    Onbas, Rabia
    Bilginer-Kartal, Rumeysa
    Arslan-Yildiz, Ahu
    INNOVATION AND EMERGING TECHNOLOGIES, 2024, 11
  • [48] 3D Bioprinting of Spatially Graded PCL/Hydrogel Constructs for Cartilage Tissue Engineering
    Daly, A. C.
    Critchley, S. E.
    Rencsok, E. M.
    Kelly, D. J.
    TISSUE ENGINEERING PART A, 2015, 21 : S187 - S188
  • [49] Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink
    Duong Nguyen
    Daniel A. Hägg
    Alma Forsman
    Josefine Ekholm
    Puwapong Nimkingratana
    Camilla Brantsing
    Theodoros Kalogeropoulos
    Samantha Zaunz
    Sebastian Concaro
    Mats Brittberg
    Anders Lindahl
    Paul Gatenholm
    Annika Enejder
    Stina Simonsson
    Scientific Reports, 7
  • [50] Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies
    Rahimnejad, Maedeh
    Rezvaninejad, Raziyehsadat
    Rezvaninejad, Rayehehossadat
    Franca, Rodrigo
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2021, 7 (06)