Lifetime Improvement Method for Memristor-Based Hyperdimensional Computing Accelerator

被引:0
|
作者
Iwasaki, Tetsuro [1 ]
Shintani, Michihiro [1 ]
机构
[1] Kyoto Inst Technol, Grad Sch Sci & Technol, Matsugasaki,Sakyo Ku, Kyoto 6068585, Japan
关键词
Hyperdimensional computing; Memristor; Dependability-aware design; Built-in self repair;
D O I
10.1109/IMFEDK60983.2023.10366339
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study proposes a lifetime extension method for a hyperdimensional computing (HDC) inference accelerator implemented with memristors using error detection and self-repair techniques. The proposed method detects faulty memristors by calculating the sum of the memory values of memristors that store hypervectors in the HDC as a checksum and replacing the failed memristors with redundant memristors, thereby extending the lifetime of the HDC inference. When a memristor fails, the resistance is stacked at the minimum or maximum. This causes the checksum value to change when a failure occurs, which can be detected by comparison with the correct summed value. A numerical evaluation with a language-comparison task shows that the lifetime can be extended by five times while maintaining the same accuracy as in the case where no lifetime extension method is applied.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] LAHDC: Logic-Aggregation-Based Query for Embedded Hyperdimensional Computing Accelerator
    Yu, Tianyang
    Wu, Bi
    Chen, Ke
    Zhang, Gong
    Liu, Weiqiang
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (01) : 119 - 129
  • [42] Rescuing Memristor-based Computing with Non-linear Resistance Levels
    Lin, Jilan
    Xia, Lixue
    Zhu, Zhenhua
    Sun, Hanbo
    Cai, Yi
    Gao, Hui
    Cheng, Ming
    Chen, Xiaoming
    Wang, Yu
    Yang, Huazhong
    PROCEEDINGS OF THE 2018 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2018, : 407 - 412
  • [43] A Reliable PPV Characterization Method for Memristor-based Oscillators
    Wang, Bo
    Wang, Hanyu
    Qi, Miao
    23RD IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS CIRCUITS AND SYSTEMS (ICECS 2016), 2016, : 41 - 44
  • [44] Hardware Implementation of Memristor-based In-Memory Computing for Classification Tasks
    Eslami, Mohammad Reza
    Takhtardeshir, Soheib
    Sharif, Sarah
    Banad, Yaser Mike
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 126 - 130
  • [45] Analysis and fully memristor-based reservoir computing for temporal data classification
    Singh, Ankur
    Choi, Sanghyeon
    Wang, Gunuk
    Daimari, Maryaradhiya
    Lee, Byung-Geun
    NEURAL NETWORKS, 2025, 182
  • [46] Thwarting Replication Attack Against Memristor-Based Neuromorphic Computing System
    Yang, Chaofei
    Liu, Beiye
    Li, Hai
    Chen, Yiran
    Barnell, Mark
    Wu, Qing
    Wen, Wujie
    Rajendran, Jeyavijayan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (10) : 2192 - 2205
  • [47] The Circuit Realization of a Neuromorphic Computing System with Memristor-Based Synapse Design
    Liu, Beiye
    Chen, Yiran
    Wysocki, Bryant
    Huang, Tingwen
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 357 - 365
  • [48] Memristor-based Synapse Design and Training Scheme for Neuromorphic Computing Architecture
    Wang, Hui
    Li, Hai
    Pino, Robinson E.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [49] Shortest Path Computing Using Memristor-Based Circuits and Cellular Automata
    Stathis, Dimitrios
    Vourkas, Ioannis
    Sirakoulis, Georgios Ch.
    CELLULAR AUTOMATA: 11TH INTERNATIONAL CONFERENCE ON CELLULAR AUTOMATA FOR RESEARCH AND INDUSTRY, 2014, 8751 : 398 - 407
  • [50] Memristor-Based Material Implication Logic: Prelude to In-Memory Computing
    Mazady A.
    Anwar M.
    International Journal of High Speed Electronics and Systems, 2023, 32 (2-4)