Deep learning-based semantic segmentation of three-dimensional point cloud: a comprehensive review

被引:0
|
作者
Singh, Dheerendra Pratap [1 ]
Yadav, Manohar [1 ]
机构
[1] Motilal Nehru Natl Inst Technol Allahabad, Geog Informat Syst GIS Cell, Prayagraj 211004, India
关键词
LiDAR; Point cloud; image; Deep learning; semantic segmentation; 3D OBJECT RECOGNITION; NEURAL-NETWORK; LIDAR DATA; CLASSIFICATION; FUSION; DATASET; NET;
D O I
10.1080/01431161.2023.2297177
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Point cloud has emerged as the most popular three-dimensional (3D) data format in recent years for several scientific and industrial applications. Point cloud semantic segmentation has piqued the researcher's interest, which is a crucial stage in 3D analysis and scene comprehension. Deep learning-based processing is more feasible to increase the availability of point cloud acquisition tools that is LiDAR systems at the user end. The point cloud learning achieves tremendous success in object detection, object categorization, and semantic segmentation. To summarize the recent works with chronological development, comprehensive review of projection-, voxel-, and direct point-based point cloud semantic segmentation methods is performed from various perspectives. The commonly used point cloud benchmark datasets with their characteristics are discussed, and they are used for the performance analysis and comparison of several state-of-the-art segmentation methods. The quantitative performance analysis of these deep learning models summarizes the trend of semantic segmentation of point clouds. In the context of point cloud semantic segmentation, the various methods have specific roles. Based on the review of methods working and their performance analysis, it is concluded that the projection-based methods prioritize efficiency, which is ideal in unavailability of high-performance computing system. Voxel-based methods capture overall context, serving well in 3D object classification. Point-based approaches excel in fine details and efficiency, suited for tasks like 3D semantic segmentation. Choosing the suitable method depends on the task, data, and resources. KPConv and DGCNN are popular choices, especially for precision and adaptability to point density. However, method performance varies, underlining the need for tailored selection. Hybrid approaches, combining method strengths, promise superior results.
引用
收藏
页码:532 / 586
页数:55
相关论文
共 50 条
  • [21] Deep learning-based cerebral aneurysm segmentation and morphological analysis with three-dimensional rotational angiography
    Nishi, Hidehisa
    Cancelliere, Nicole M.
    Rustici, Ariana
    Charbonnier, Guillaume
    Chan, Vanessa
    Spears, Julian
    Marotta, Thomas R.
    Pereira, Vitor Mendes
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2024, 16 (02) : 197 - 203
  • [22] Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion Processing and Analysis
    Fei, Ben
    Yang, Weidong
    Chen, Wen-Ming
    Li, Zhijun
    Li, Yikang
    Ma, Tao
    Hu, Xing
    Ma, Lipeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 22862 - 22883
  • [23] Deep learning-based point cloud upsampling: a review of recent trends
    Soonjo Kwon
    Ji-Hyeon Hur
    Hyungki Kim
    JMST Advances, 2023, 5 (4) : 105 - 111
  • [24] Deep learning-based semantic segmentation for morphological fractography
    Tang, Keke
    Zhang, Peng
    Zhao, Yindun
    Zhong, Zheng
    ENGINEERING FRACTURE MECHANICS, 2024, 303
  • [25] A Deep Learning-Based Image Semantic Segmentation Algorithm
    Shen, Chaoqun
    Sun, Zhongliang
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2023, 19 (01): : 98 - 108
  • [26] A Review on Recent Deep Learning-Based Semantic Segmentation for Urban Greenness Measurement
    Lee, Doo Hong
    Park, Hye Yeon
    Lee, Joonwhoan
    SENSORS, 2024, 24 (07)
  • [27] A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation
    Sarker, Sushmita
    Sarker, Prithul
    Stone, Gunner
    Gorman, Ryan
    Tavakkoli, Alireza
    Bebis, George
    Sattarvand, Javad
    MACHINE VISION AND APPLICATIONS, 2024, 35 (04)
  • [28] Learning-Based Sampling Method for Point Cloud Segmentation
    An, Yi
    Wang, Jian
    He, Lijun
    Li, Fan
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 24140 - 24151
  • [29] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [30] Deep learning network for indoor point cloud semantic segmentation with transferability
    Li, Luping
    Chen, Jian
    Su, Xing
    Han, Haoying
    Fan, Chao
    AUTOMATION IN CONSTRUCTION, 2024, 168