SuperDriverAI: Towards Design and Implementation for End-to-End Learning-based Autonomous Driving

被引:0
|
作者
Aoki, Shunsuke [1 ,2 ]
Yamamoto, Issei [2 ]
Shiotsuka, Daiki [2 ]
Inoue, Yuichi [2 ]
Tokuhiro, Kento [2 ]
Miwa, Keita [2 ]
机构
[1] Natl Inst Informat, Tokyo, Japan
[2] TURING Inc, Tokyo, Japan
关键词
D O I
10.1109/VNC57357.2023.10136277
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Fully autonomous driving has been widely studied and is becoming increasingly feasible. However, such autonomous driving has yet to be achieved on public roads, because of various uncertainties due to surrounding human drivers and pedestrians. In this paper, we present an end-to-end learning-based autonomous driving system named SuperDriver AI, where Deep Neural Networks (DNNs) learn the driving actions and policies from the experienced human drivers and determine the driving maneuvers to take while guaranteeing road safety. In addition, to improve robustness and interpretability, we present a slit model and a visual attention module. We build a data-collection system and emulator with real-world hardware, and we also test the SuperDriver AI system with real-world driving scenarios. Finally, we have collected 150 runs for one driving scenario in Tokyo, Japan, and have shown the demonstration of SuperDriver AI with the real-world vehicle.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
  • [31] Learning End-to-end Autonomous Driving using Guided Auxiliary Supervision
    Mehta, Ashish
    Subramanian, Adithya
    Subramanian, Anbumani
    ELEVENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2018), 2018,
  • [32] Agile Autonomous Driving using End-to-End Deep Imitation Learning
    Pan, Yunpeng
    Cheng, Ching-An
    Saigol, Kamil
    Lee, Keuntaek
    Yan, Xinyan
    Theodorou, Evangelos A.
    Boots, Byron
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [33] End-to-end deep learning for reverse driving trajectory of autonomous bulldozer
    You, Ke
    Ding, Lieyun
    Jiang, Yutian
    Wu, Zhangang
    Zhou, Cheng
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [34] End-to-end Autonomous Driving: Advancements and Challenges
    Chu, Duan-Feng
    Wang, Ru-Kang
    Wang, Jing-Yi
    Hua, Qiao-Zhi
    Lu, Li-Ping
    Wu, Chao-Zhong
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2024, 37 (10): : 209 - 232
  • [35] End-to-End Autonomous Driving: Challenges and Frontiers
    Chen, Li
    Wu, Penghao
    Chitta, Kashyap
    Jaeger, Bernhard
    Geiger, Andreas
    Li, Hongyang
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (12) : 10164 - 10183
  • [36] End-to-End Learning Model Design for Steering Autonomous Vehicle
    Karsli, Munir
    Satilmis, Yusuf
    Sara, Muhammed
    Tufan, Furkan
    Eken, Suleyman
    Sayar, Ahmet
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [37] Deep Learning-Based End-to-End Design for OFDM Systems With Hardware Impairments
    Wu, Cheng-Yu
    Lin, Yu-Kai
    Wu, Chun-Kuan
    Lee, Chia-Han
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2023, 4 : 2468 - 2482
  • [38] End-to-End Learning-Based Image Compression: A Review
    Chen Jimin
    Lin Zehao
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (22)
  • [39] End-to-end autonomous driving based on the convolution neural network model
    Zhao, Yuanfang
    Chen, Yunli
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 419 - 423
  • [40] A Hierarchical Temporal Memory Based End-to-End Autonomous Driving System
    Le Mero, Luc
    Dianati, Mehrdad
    Lee, Graham
    Journal of Autonomous Vehicles and Systems, 2022, 2 (04):