Self-powered electrocatalytic nitrate to ammonia driven by lightweight triboelectric nanogenerators for wind energy harvesting

被引:20
|
作者
Wang, Shuaitong [1 ]
Liu, Yang [2 ]
Zhang, Kun [2 ]
Gao, Shuyan [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-powered system; Electrocatalytic nitrate to ammonia; Triboelectric nanogenerator; Wind energy; 3D printing technology; ELECTROCHEMICAL REDUCTION; HIGH-EFFICIENCY; ANODE;
D O I
10.1016/j.nanoen.2023.108434
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia (NH3) is an essential feedstock for modern industry and agriculture, as well as a promising energy carrier owing to its high energy density (4.3 kWh kg(-1)) and storage security. The electrocatalytic nitrate reduction reaction to ammonia (NRA) is a promising alternative route for convenient and distributed NH3 synthesis coupled with clean energy, and is attracting widespread attention. Building a coupled system for NH3 production between NRA and clean energy capture is an exciting direction for future distributed energy utilization and conversion. Herein, a lightweight triboelectric nanogenerators (TENGs) with ultra-low start-up wind speed (3.0 m s(-1)) is coupled to NRA system loaded with polycrystalline copper, enabling energy harvesting in a wide wind speed band for the efficient NH3 production. An adaptation strategy for capacitor embedded in the energy conversion process is proposed to further enhance the efficiency of coupled system, achieving a high NH3 yield of 11.48 mu g cm(-2) h(-1) with the high catalytic activity of polycrystalline copper on cathode. This work opens up a coupled electrocatalysis and natural energy capture system for the conversion of NO3- to NH3, and provides an idea for the renewable energy conversion and nitrogen cycle remediation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Triboelectric nanogenerators as self-powered active sensors
    Wang, Sihong
    Lin, Long
    Wang, Zhong Lin
    NANO ENERGY, 2015, 11 : 436 - 462
  • [22] Triboelectric Nanogenerators for Self-Powered Breath Monitoring
    Shen, Sophia
    Xiao, Xiao
    Xiao, Xiao
    Chen, Jun
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 3952 - 3965
  • [23] Self-healable, stretchable triboelectric nanogenerators based on flexible polyimide for energy harvesting and self-powered sensors
    Li, Changyang
    Wang, Peng
    Zhang, Dun
    NANO ENERGY, 2023, 109
  • [24] Transparent-flexible-multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications
    Zhou, Qitao
    Park, Jun Gyu
    Kim, Kyeong Nam
    Thokchom, Ashish Kumar
    Bae, Juyeol
    Baik, Jeong Min
    Kim, Taesung
    NANO ENERGY, 2018, 48 : 471 - 480
  • [25] Hybridized triboelectric-electromagnetic nanogenerators for efficient harvesting of wave energy for self-powered ocean buoy
    Zhang, Chengzhuo
    Yang, Shaohui
    Dai, Xianggang
    Tu, Yongqiang
    Du, Zhichang
    Wu, Xiaobo
    Huang, Yan
    Fan, Jianyu
    Hong, Zhanyong
    Jiang, Tao
    Wang, Zhong Lin
    NANO ENERGY, 2024, 128
  • [26] Environmentally Friendly Hydrogel-Based Triboelectric Nanogenerators for Versatile Energy Harvesting and Self-Powered Sensors
    Xu, Wei
    Huang, Long-Biao
    Wong, Man-Chung
    Chen, Li
    Bai, Gongxun
    Hao, Jianhua
    ADVANCED ENERGY MATERIALS, 2017, 7 (01)
  • [27] Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
    Wang, Zhong Lin
    Chen, Jun
    Lin, Long
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (08) : 2250 - 2282
  • [28] Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors
    Song, Yiding
    Wang, Nan
    Hu, Chaosheng
    Wang, Zhong Lin
    Yang, Ya
    NANO ENERGY, 2021, 84
  • [29] Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting
    Ren, Xiaohu
    Fan, Huiqing
    Wang, Chao
    Ma, Jiangwei
    Li, Hua
    Zhang, Mingchang
    Lei, Shenhui
    Wang, Weijia
    NANO ENERGY, 2018, 50 : 562 - 570
  • [30] A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring
    He, Lixia
    Zhang, Chuguo
    Zhang, Baofeng
    Yang, Ou
    Yuan, Wei
    Zhou, Linglin
    Zhao, Zhihao
    Wu, Zhiyi
    Wang, Jie
    Wang, Zhong Lin
    ACS NANO, 2022, 16 (04) : 6244 - 6254