Self-powered electrocatalytic nitrate to ammonia driven by lightweight triboelectric nanogenerators for wind energy harvesting

被引:20
|
作者
Wang, Shuaitong [1 ]
Liu, Yang [2 ]
Zhang, Kun [2 ]
Gao, Shuyan [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-powered system; Electrocatalytic nitrate to ammonia; Triboelectric nanogenerator; Wind energy; 3D printing technology; ELECTROCHEMICAL REDUCTION; HIGH-EFFICIENCY; ANODE;
D O I
10.1016/j.nanoen.2023.108434
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia (NH3) is an essential feedstock for modern industry and agriculture, as well as a promising energy carrier owing to its high energy density (4.3 kWh kg(-1)) and storage security. The electrocatalytic nitrate reduction reaction to ammonia (NRA) is a promising alternative route for convenient and distributed NH3 synthesis coupled with clean energy, and is attracting widespread attention. Building a coupled system for NH3 production between NRA and clean energy capture is an exciting direction for future distributed energy utilization and conversion. Herein, a lightweight triboelectric nanogenerators (TENGs) with ultra-low start-up wind speed (3.0 m s(-1)) is coupled to NRA system loaded with polycrystalline copper, enabling energy harvesting in a wide wind speed band for the efficient NH3 production. An adaptation strategy for capacitor embedded in the energy conversion process is proposed to further enhance the efficiency of coupled system, achieving a high NH3 yield of 11.48 mu g cm(-2) h(-1) with the high catalytic activity of polycrystalline copper on cathode. This work opens up a coupled electrocatalysis and natural energy capture system for the conversion of NO3- to NH3, and provides an idea for the renewable energy conversion and nitrogen cycle remediation.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators
    Han, Kai
    Luo, Jianjun
    Feng, Yawei
    Xu, Liang
    Tang, Wei
    Wang, Zhong Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (08) : 2450 - 2458
  • [2] Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators
    Yao, Mingliang
    Xie, Guangzhong
    Gong, Qichen
    Su, Yuanjie
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 : 1590 - 1595
  • [3] Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators
    Yao M.
    Xie G.
    Gong Q.
    Su Y.
    Beilstein Journal of Nanotechnology, 2020, 11 : 1590 - 1595
  • [4] Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science
    Cao, Xia
    Jie, Yang
    Wang, Ning
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2016, 6 (23)
  • [5] Phosphor-Based Triboelectric Nanogenerators for Mechanical Energy Harvesting and Self-Powered Systems
    Rakshita, Muddamalla
    Madathil, Navaneeth
    Sharma, Aachal A.
    Pradhan, Payal P.
    Kasireddi, A. K. Durga Prasad
    Khanapuram, Uday Kumar
    Rajaboina, Rakesh Kumar
    Divi, Haranath
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (03) : 1821 - 1828
  • [6] A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Wu, Fan
    Li, Congju
    Yin, Yingying
    Cao, Ran
    Li, Hui
    Zhang, Xiuling
    Zhao, Shuyu
    Wang, Jiaona
    Wang, Bin
    Xing, Yi
    Du, Xinyu
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (01):
  • [7] Triboelectric nanogenerators for self-powered neurostimulation
    Xu, Shumao
    Manshaii, Farid
    Xiao, Xiao
    Yin, Junyi
    Chen, Jun
    NANO RESEARCH, 2024, : 8926 - 8941
  • [8] Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System
    Yang, Ya
    Zhu, Guang
    Zhang, Hulin
    Chen, Jun
    Zhong, Xiandai
    Lin, Zong-Hong
    Su, Yuanjie
    Bai, Peng
    Wen, Xiaonan
    Wang, Zhong Lin
    ACS NANO, 2013, 7 (10) : 9461 - 9468
  • [9] Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics
    Fan, Feng Ru
    Tang, Wei
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2016, 28 (22) : 4283 - 4305
  • [10] Triboelectric Nanogenerators for Marine Applications: Recent Advances in Energy Harvesting, Monitoring, and Self-Powered Equipment
    Dip, Tanvir Mahady
    Arin, Md. Reasat Aktar
    Anik, Habibur Rahman
    Uddin, Md Mazbah
    Tushar, Shariful Islam
    Sayam, Abdullah
    Sharma, Suraj
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (21):