Heterogeneous Graph Convolutional Network Based on Correlation Matrix

被引:1
|
作者
Qiu, Liqing [1 ]
Zhou, Jingcheng [1 ]
Jing, Caixia [1 ]
Liu, Yuying [1 ]
机构
[1] Shandong Univ Sci & Technol, 579 Qianwangang Rd, Qingdao 266590, Shandong, Peoples R China
关键词
Graph embedding; Heterogeneous graph neural network; Correlation matrix; Meta-path;
D O I
10.1016/j.bdr.2023.100379
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heterogeneous graph embedding maps a high-dimension graph that has different sorts of nodes and edges to a low-dimensional space, making it perform well in downstream tasks. The existing models mainly use two approaches to explore and embed heterogeneous graph information. One is to use meta -path to mining heterogeneous information; the other is to use special modules designed by researchers to explore heterogeneous information. These models show excellent performance in heterogeneous graph embedding tasks. However, none of the models considers using the number of meta-path instances between nodes to improve the performance of heterogeneous graph embedding. The paper proposes a Heterogeneous Graph Convolutional Network based on Correlation Matrix (CMHGCN) to fully use of the number of meta-path instances between nodes to discover interactive information between nodes in heterogeneous graphs. CMHGCN contains two core components: the node-level correlation component and the semantic-level correlation component. The node-level correlation component is able to use the number of meta-path instances between nodes to calculate the correlation between nodes guided by different meta-paths. The semantic-level correlation component can reasonably integrate such information from different meta-paths. On heterogeneous graphs with a large number of meta-path instances, CMHGCN outperforms baselines in node classification and clustering, according to experiments carried out on three benchmark heterogeneous datasets.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network
    Yufei ZENG
    Zhixin LI
    Zhenbin CHEN
    Huifang MA
    Frontiers of Computer Science, 2023, 17 (06) : 89 - 101
  • [22] Higher-Order Heterogeneous Graph Convolutional Network Based on Meta-Paths
    Zhao, Wanting
    Xu, Hao
    Huang, Wenzhuo
    Xie, Jinkui
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [23] Heterogeneous Graph Convolutional Network-Based Dynamic Rumor Detection on Social Media
    Yu, Dingguo
    Zhou, Yijie
    Zhang, Suiyu
    Liu, Chang
    COMPLEXITY, 2022, 2022
  • [24] Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network
    Zeng, Yufei
    Li, Zhixin
    Chen, Zhenbin
    Ma, Huifang
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (06)
  • [25] CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
    Ma, Zhihao
    Kuang, Zhufang
    Deng, Lei
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [26] CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
    Zhihao Ma
    Zhufang Kuang
    Lei Deng
    BMC Bioinformatics, 22
  • [27] Multi-Aspect Heterogeneous Graph Convolutional Network for Recommendation
    Liu, Gangdu
    Wang, Jing
    Wu, Jun
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 1192 - 1196
  • [28] Heterogeneous graph convolutional neural network for argument pair extraction
    Liu Y.
    Zhu X.
    Yin Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (05): : 900 - 907and1049
  • [29] Heterogeneous graph convolutional neural network for short text classification
    Huang B.
    Li P.
    Fang Z.
    Lei L.
    Wang C.
    International Journal of Intelligent Systems Technologies and Applications, 2023, 21 (04) : 344 - 365
  • [30] Heterogeneous Information Network Embedding with Convolutional Graph Attention Networks
    Cao, Meng
    Ma, Xiying
    Zhu, Kai
    Xu, Ming
    Wang, Chongjun
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,