Heterogeneous Graph Convolutional Network Based on Correlation Matrix

被引:1
|
作者
Qiu, Liqing [1 ]
Zhou, Jingcheng [1 ]
Jing, Caixia [1 ]
Liu, Yuying [1 ]
机构
[1] Shandong Univ Sci & Technol, 579 Qianwangang Rd, Qingdao 266590, Shandong, Peoples R China
关键词
Graph embedding; Heterogeneous graph neural network; Correlation matrix; Meta-path;
D O I
10.1016/j.bdr.2023.100379
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heterogeneous graph embedding maps a high-dimension graph that has different sorts of nodes and edges to a low-dimensional space, making it perform well in downstream tasks. The existing models mainly use two approaches to explore and embed heterogeneous graph information. One is to use meta -path to mining heterogeneous information; the other is to use special modules designed by researchers to explore heterogeneous information. These models show excellent performance in heterogeneous graph embedding tasks. However, none of the models considers using the number of meta-path instances between nodes to improve the performance of heterogeneous graph embedding. The paper proposes a Heterogeneous Graph Convolutional Network based on Correlation Matrix (CMHGCN) to fully use of the number of meta-path instances between nodes to discover interactive information between nodes in heterogeneous graphs. CMHGCN contains two core components: the node-level correlation component and the semantic-level correlation component. The node-level correlation component is able to use the number of meta-path instances between nodes to calculate the correlation between nodes guided by different meta-paths. The semantic-level correlation component can reasonably integrate such information from different meta-paths. On heterogeneous graphs with a large number of meta-path instances, CMHGCN outperforms baselines in node classification and clustering, according to experiments carried out on three benchmark heterogeneous datasets.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multiplex Heterogeneous Graph Convolutional Network
    Yu, Pengyang
    Fu, Chaofan
    Yu, Yanwei
    Huang, Chao
    Zhao, Zhongying
    Dong, Junyu
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2377 - 2387
  • [2] Heterogeneous graph convolutional network with local influence
    Chen, Ke-Jia
    Lu, Hao
    Liu, Zheng
    Zhang, Jiajun
    KNOWLEDGE-BASED SYSTEMS, 2022, 236
  • [3] Interpretable and Efficient Heterogeneous Graph Convolutional Network
    Yang, Yaming
    Guan, Ziyu
    Li, Jianxin
    Zhao, Wei
    Cui, Jiangtao
    Wang, Quan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1637 - 1650
  • [4] Heterogeneous Modular Traffic Prediction Based on Multilayer Graph Convolutional Network
    Chang, Mengmeng
    Ding, Zhiming
    Zhao, Zilin
    Cai, Zhi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7805 - 7817
  • [5] Graph Convolutional Neural Network based on the Combination of Multiple Heterogeneous Graphs
    Mu, Caihong
    Huang, Heyuan
    Liu, Yi
    Luo, Jiashen
    IEEE International Conference on Data Mining Workshops, ICDMW, 2022, 2022-November : 724 - 731
  • [6] Drug repositioning based on the heterogeneous information fusion graph convolutional network
    Cai, Lijun
    Lu, Changcheng
    Xu, Junlin
    Meng, Yajie
    Wang, Peng
    Fu, Xiangzheng
    Zeng, Xiangxiang
    Su, Yansen
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [7] Graph Convolutional Neural Network based on the Combination of Multiple Heterogeneous Graphs
    Mu, Caihong
    Huang, Heyuan
    Liu, Yi
    Luo, Jiashen
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 724 - 731
  • [9] A Drug Combination Prediction Framework Based on Graph Convolutional Network and Heterogeneous Information
    Chen, Hegang
    Lu, Yuyin
    Yang, Yuedong
    Rao, Yanghui
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 1917 - 1925
  • [10] Online Sensitive Text Classification Model Based on Heterogeneous Graph Convolutional Network
    Gao, Haoxin
    Sun, Lijuan
    Wu, Jingchen
    Gao, Yutong
    Wu, Xu
    Data Analysis and Knowledge Discovery, 2023, 7 (11): : 26 - 36