Singular strange attractors beyond the boundary of hyperbolic flows

被引:0
|
作者
Lee, K. [1 ]
Morales, C. A. [2 ]
Pacifico, M. J. [2 ]
机构
[1] Chungnam Natl Univ, Dept Math, Daejeon 305764, South Korea
[2] Univ Fed Rio De Janeiro, Inst Matemat, POB 68530, BR-21945970 Rio De Janeiro, Brazil
关键词
Flow; Singular strange attractor; Manifold;
D O I
10.1016/j.jde.2022.11.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the suspension of an expanding attractor in the two-disk can be deformed into a robust singular strange attractor. The deformation is done through an arc of three-dimensional flows with only one bifurcation. The attractors so obtained are not Lorenz-like.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:104 / 129
页数:26
相关论文
共 50 条
  • [31] STRANGE ATTRACTORS
    RUELLE, D
    RECHERCHE, 1980, 11 (108): : 132 - &
  • [32] Strange attractors
    Nemecek, S
    SCIENTIFIC AMERICAN, 1997, 276 (05) : 40 - 40
  • [33] A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity
    Kengne, J.
    Njikam, S. M.
    Signing, V. R. Folifack
    CHAOS SOLITONS & FRACTALS, 2018, 106 : 201 - 213
  • [34] Strange attractors
    Williams, Nigel
    CURRENT BIOLOGY, 2007, 17 (17) : R739 - R739
  • [35] STRANGE ATTRACTORS
    PERELLO, C
    LECTURE NOTES IN PHYSICS, 1982, 164 : 307 - 321
  • [36] 'Strange attractors'
    Nevill, S
    ANTIGONISH REVIEW, 2000, (121): : 77 - 77
  • [37] Strange attractors
    Parsons, Ian
    Elements, 2010, 6 (05)
  • [38] Strange Attractors
    Barnard, Imelda
    APOLLO-THE INTERNATIONAL ART MAGAZINE, 2020, 191 (693): : 94 - 95
  • [39] Omega-limit sets close to singular-hyperbolic attractors
    Carballo, CM
    Morales, CA
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (02) : 645 - 663
  • [40] Architecture of chaotic attractors for flows in the absence of any singular point
    Letellier, Christophe
    Malasoma, Jean-Marc
    CHAOS, 2016, 26 (06)