Spin dynamics in ordered phases of the anisotropic triangular-lattice antiferromagnet Cs2CoBr4

被引:2
|
作者
Soldatov, T. A. [1 ]
Smirnov, A. I. [1 ]
Syromyatnikov, A. V. [2 ]
机构
[1] PL Kapitza Inst Phys Problems RAS, Moscow 119334, Russia
[2] Natl Res Ctr Kurchatov Inst, Petersburg Nucl Phys Inst, Gatchina 188300, Russia
基金
俄罗斯科学基金会;
关键词
Compendex;
D O I
10.1103/PhysRevB.108.184426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study spin dynamics of ordered phases of Cs2CoBr4 in a magnetic field using electron-spin resonance (ESR) technique and theoretical analysis. This material hosts weakly interacting distorted-triangular-lattice planes of spin -32 Co2+ ions which can be viewed as spin chains coupled by frustrating interactions. Strong single-ion anisotropy allows us to describe the low-energy spin dynamics of this system by an effective strongly anisotropic pseudospin-12 model. Our ESR data show up to seven branches of magnetic resonance in four magnetic phases arising due to subtle interplay of frustration, low dimensionality, and strong anisotropy. In particular, in the low-field collinear stripe phase, the field evolution of modes lying below 200 GHz is described reasonably well by spectra of spin-1 and spin-0 quasiparticles which we obtain using the bond-operator technique. These well-defined excitations can be treated as conventional magnons and bound states of two magnons, respectively. In contrast, numerous excitations lying above 200 GHz are not captured by our theory due to pronounced one-dimensional correlations inside spin chains which govern the spin dynamics at high enough energies. As was shown before, these modes can be most naturally interpreted as bound states of domain walls in individual chains and their sequence resembles the so-called "Zeeman ladder" in anisotropic Ising-like spin chains. Thus, Cs2CoBr4 is a system showing spin-dynamics in an ordered state characteristic of both two-dimensional and one-dimensional magnets.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Spin Dynamics of Two-Dimensional Triangular-Lattice Antiferromagnet 3R-AgFeO2
    Zvereva, E. A.
    Vasilchikova, T. M.
    Stratan, M. I.
    Belik, A. A.
    Vasiliev, A. N.
    APPLIED MAGNETIC RESONANCE, 2019, 50 (05) : 637 - 648
  • [22] Experimental Realization of a Spin-1/2 Triangular-Lattice Heisenberg Antiferromagnet
    Shirata, Yutaka
    Tanaka, Hidekazu
    Matsuo, Akira
    Kindo, Koichi
    PHYSICAL REVIEW LETTERS, 2012, 108 (05)
  • [23] Field-induced quantum phase transitions in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4
    Fortune, N. A.
    Hannahs, S. T.
    Takano, Y.
    Yoshida, Y.
    Sherline, T.
    Wilson-Muenchow, A. A.
    Ono, T.
    Tanaka, H.
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
  • [24] A new spin-polaron technique for treating the triangular-lattice antiferromagnet
    Z. N. Dong
    Physics of the Solid State, 2008, 50 : 270 - 274
  • [25] The Magnetization Process of the Spin-One Triangular-Lattice Heisenberg Antiferromagnet
    Richter, Johannes
    Goetze, Oliver
    Zinke, Ronald
    Farnell, Damian J. J.
    Tanaka, Hidekazu
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (01)
  • [26] SPIN-WAVE THEORY OF THE TRIANGULAR-LATTICE HEISENBERG-ANTIFERROMAGNET
    AOKI, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (02) : 731 - 742
  • [27] Probing Spin Chirality of the Equilateral Triangular-Lattice Antiferromagnet RbFe(MoO4)2 through Multiferroicity
    Mitamura, H.
    Watanuki, R.
    Onozaki, N.
    Shimura, Y.
    Kittaka, S.
    Sakakibara, T.
    Suzuki, K.
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS (SCES 2011), 2012, 391
  • [28] Spin dynamics in the distorted triangular lattice antiferromagnet α-SrCr2O4
    Songvilay, M.
    Petit, S.
    Suard, E.
    Martin, C.
    Damay, F.
    PHYSICAL REVIEW B, 2017, 96 (02)
  • [29] Evidence of one-dimensional magnetic heat transport in the triangular-lattice antiferromagnet Cs2CuCl4
    Schulze, E.
    Arsenijevic, S.
    Opherden, L.
    Ponomaryov, A. N.
    Wosnitza, J.
    Ono, T.
    Tanaka, H.
    Zvyagin, S. A.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [30] Effect of interlayer interactions and lattice distortions on the magnetic ground state and spin dynamics of a geometrically frustrated triangular-lattice antiferromagnet
    Haraldsen, J. T.
    Fishman, R. S.
    PHYSICAL REVIEW B, 2010, 82 (14):