Limiting eigenvalue behavior of a class of large dimensional random matrices formed from a Hadamard product

被引:0
|
作者
Silverstein, Jack W. [1 ]
机构
[1] North Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
关键词
Eigenvalues of random matrices; Hadamard product; deterministic equivalent; SPECTRAL DISTRIBUTION;
D O I
10.1142/S2010326322500502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper investigates the strong limiting behavior of the eigenvalues of the class of matrices 1/N (D-n circle X-n)(D-n circle X-n)*, studied in [V. L. Girko, Theory of Stochastic Canonical Equations: Vol. 1 (Kluwer Academic Publishers, Dordrecht, 2001)]. Here, X-n = (x(ij)) is an n x N random matrix consisting of independent complex standardized random variables, D-n = (d(ij)), n x N, has nonnegative entries, and. denotes Hadamard (componentwise) product. Results are obtained under assumptions on the entries of X-n and D-n which are different from those in [V. L. Girko, Theory of Stochastic Canonical Equations: Vol. 1 (Kluwer Academic Publishers, Dordrecht, 2001)], which include a Lindeberg condition on the entries of D-n circle X-n, as well as a bound on the average of the rows and columns of D-n circle D-n. The present paper separates the assumptions needed on X-n and D-n. It assumes a Lindeberg condition on the entries of X-n, along with a tightness-like condition on the entries of D-n.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Bulk behavior of Schur-Hadamard products of symmetric random matrices
    Bose, Arup
    Mukherjee, Soumendu Sundar
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2014, 3 (02)
  • [42] Some Lower Bounds with a Parameter for the Minimum Eigenvalue of Hadamard Product of M-Matrices and Inverse M-Matrices
    Zeng, Wenlong
    Liu, Jianzhou
    Wang, Juan
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3947 - 3970
  • [43] Eigenvalue Estimation of Parameterized Covariance Matrices of Large Dimensional Data
    Yao, Jianfeng
    Kammoun, Abla
    Najim, Jamal
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5893 - 5905
  • [44] Theory of large dimensional random matrices for engineers
    Silverstein, Jack W.
    Tulino, Antonia M.
    2006 IEEE NINTH INTERNATIONAL SYMPOSIUM ON SPREAD SPECTRUM TECHNIQUES AND APPLICATIONS, PROCEEDINGS, 2006, : 458 - 464
  • [45] A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices
    Hiai, F
    Petz, D
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (01): : 71 - 85
  • [46] Isolated Hadamard matrices from mutually unbiased product bases
    McNulty, Daniel
    Weigert, Stefan
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [47] On a class of H-selfadjont random matrices with one eigenvalue of nonpositive type
    Wojtylak, Michal
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 14
  • [48] Limiting behavior of large correlated Wishart matrices with chaotic entries
    Bourguin, Solesne
    Diez, Charles-Philippe
    Tudor, Ciprian A.
    BERNOULLI, 2021, 27 (02) : 1077 - 1102
  • [49] Eigenvalue Statistics of Finite-Dimensional Random Matrices for MIMO Wireless Communications
    Alfano, Giuseppa
    Tulino, Antonia M.
    Lozano, Angel
    Verdu, Sergio
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 4125 - 4129
  • [50] Eigenvalue Results for Large Scale Random Vandermonde Matrices With Unit Complex Entries
    Tucci, Gabriel H.
    Whiting, Philip A.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) : 3938 - 3954