Photothermal and superhydrophobic composite coatings with sandwich and interlocking structure for effective anti-icing and de-icing

被引:3
|
作者
Xu, Ying [1 ]
Ding, Sili [1 ]
Yang, Fuchao [1 ,2 ]
Guo, Zhiguang [1 ,3 ]
机构
[1] Hubei Univ, Key Lab Green Preparat & Applicat Funct Mat, Minist Educ, Wuhan 430062, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[3] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
关键词
Superhydrophobic; Photothermal conversion; Anti-icing and de-icing; Interlocking structure; Mechanical stability; SURFACES; PERFORMANCE;
D O I
10.1016/j.surfin.2023.103410
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The accumulation of ice has brought so many troubles to our daily life and production. To achieve more efficient and environmentally friendly anti-icing and de-icing, combining active and passive methods is an effective strategy for ice prevention and removal. In this study, low-cost and widely available black carbon (BC) and versatile biomimetic adhesion polydopamine (PDA) were selected as photothermal conversion ingredient. Utilizing a simple stirring process and interfacial polymerization, the superhydrophobic photothermal fabric with sandwich structure was obtained. The presence of polydimethylsiloxane (PDMS) and BC/PDA mixed intermediate layer allows for more efficient absorption of solar radiation, facilitating rapid heat conduction and accumulation. Under about 1 Sun illumination, the coatings can reach a maximum surface temperature of 95.6 +/- 2 degrees C. Moreover, the exceptional hydrophobicity of the coatings can help minimize the pollutants' adhesion, decrease the nucleation sites and prolong the time before ice formation. As a result, the coating exhibited a freezing time of 2.8 times slower than that of the original fabric. Under 1 Sun illumination, it took about 53 s for sliding off the surface. The de-icing time is one-eighth of that of the bare substrate. More importantly, the coating also exhibited excellent mechanical, chemical and cycling stability, making it promising for practical de-icing applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Stable photothermal solid slippery surface with enhanced anti-icing and de-icing properties
    Xiang, Tengfei
    Chen, Xuxin
    Lv, Zhong
    Tong, Wei
    Cao, Jun
    Shen, Yizhou
    Liao, Bokai
    Xie, Yannan
    Zhang, Shihong
    [J]. APPLIED SURFACE SCIENCE, 2023, 624
  • [22] Large-scale fabrication of superhydrophobic shape memory composite films for efficient anti-icing and de-icing
    Li, Xinlin
    Liu, Yanju
    Leng, Jinsong
    [J]. SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2023, 37
  • [23] Wave-transparent electrothermal composite film for anti-icing/de-icing
    Chen, Jichen
    Zhao, Zehui
    Zhu, Yantong
    Xu, Yonggang
    Yuan, Liming
    Zhang, Liwen
    Wang, Zelinlan
    Liu, Xiaolin
    Chen, Huawei
    [J]. PROGRESS IN ORGANIC COATINGS, 2023, 183
  • [24] Photothermally promoted recovery of a superhydrophobic surface with anti-icing and de-icing properties for outdoor applications
    Lee, Seulchan
    Bae, Mi Ju
    Seo, Eun Jeong
    Lyu, Jihong
    Lee, Sang -Ho
    Jung, Yu Jin
    Jung, Hyocheol
    Park, Young Il
    Kim, Jin Chul
    Jeong, Ji-Eun
    [J]. PROGRESS IN ORGANIC COATINGS, 2024, 189
  • [25] Anti-icing and de-icing coatings based Joule's heating of graphene nanoplatelets
    Redondo, O.
    Prolongo, S. G.
    Campo, M.
    Sbarufatti, C.
    Giglio, M.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 164 : 65 - 73
  • [26] Anti-icing potential of superhydrophobic coatings
    Boinovich, Ludmila B.
    Emelyanenko, Alexandre M.
    [J]. MENDELEEV COMMUNICATIONS, 2013, 23 (01) : 3 - 10
  • [27] Fabrication of anti-icing/de-icing superhydrophobic composite coating based on hydrangea-like ZnO@CuS
    Bao, Yan
    Yang, Hong
    Gao, Lu
    Zheng, Xi
    Shi, Xiujuan
    Zhang, Wenbo
    Liu, Chao
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 245
  • [28] A review on passive and active anti-icing and de-icing technologies
    Rekuviene, Regina
    Saeidiharzand, Shaghayegh
    Mazeika, Liudas
    Samaitis, Vykintas
    Jankauskas, Audrius
    Sadaghiani, Abdolali K.
    Gharib, Ghazaleh
    Muganli, Zuelal
    Kosar, Ali
    [J]. APPLIED THERMAL ENGINEERING, 2024, 250
  • [29] A superhydrophobic/photothermal synergistic anti-icing mesh with active/passive anti-icing function
    Cao, Zhanguo
    Gong, Zeweiyi
    Ma, Xianlong
    Peng, Jing
    Xiong, Yanmei
    Nie, Yongjie
    Duan, Yuting
    Li, Hao
    Zhou, Shuai
    Rao, Tong
    Chen, Qizhi
    Wang, Peng
    [J]. MATERIALS RESEARCH EXPRESS, 2024, 11 (07)
  • [30] The preparation of CNTs/GP/TiN/PDMS/PVDF superhydrophobic coating with strong photothermal and electrothermal properties for anti-icing and de-icing
    Jiang, Lihua
    Sun, Jiajin
    Lin, Yifan
    Gong, Mengtian
    Tu, Kai
    Chen, Yutong
    Xiao, Ting
    Xiang, Peng
    Tan, Xinyu
    [J]. SURFACE & COATINGS TECHNOLOGY, 2024, 476