Photothermal and superhydrophobic composite coatings with sandwich and interlocking structure for effective anti-icing and de-icing

被引:3
|
作者
Xu, Ying [1 ]
Ding, Sili [1 ]
Yang, Fuchao [1 ,2 ]
Guo, Zhiguang [1 ,3 ]
机构
[1] Hubei Univ, Key Lab Green Preparat & Applicat Funct Mat, Minist Educ, Wuhan 430062, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[3] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
关键词
Superhydrophobic; Photothermal conversion; Anti-icing and de-icing; Interlocking structure; Mechanical stability; SURFACES; PERFORMANCE;
D O I
10.1016/j.surfin.2023.103410
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The accumulation of ice has brought so many troubles to our daily life and production. To achieve more efficient and environmentally friendly anti-icing and de-icing, combining active and passive methods is an effective strategy for ice prevention and removal. In this study, low-cost and widely available black carbon (BC) and versatile biomimetic adhesion polydopamine (PDA) were selected as photothermal conversion ingredient. Utilizing a simple stirring process and interfacial polymerization, the superhydrophobic photothermal fabric with sandwich structure was obtained. The presence of polydimethylsiloxane (PDMS) and BC/PDA mixed intermediate layer allows for more efficient absorption of solar radiation, facilitating rapid heat conduction and accumulation. Under about 1 Sun illumination, the coatings can reach a maximum surface temperature of 95.6 +/- 2 degrees C. Moreover, the exceptional hydrophobicity of the coatings can help minimize the pollutants' adhesion, decrease the nucleation sites and prolong the time before ice formation. As a result, the coating exhibited a freezing time of 2.8 times slower than that of the original fabric. Under 1 Sun illumination, it took about 53 s for sliding off the surface. The de-icing time is one-eighth of that of the bare substrate. More importantly, the coating also exhibited excellent mechanical, chemical and cycling stability, making it promising for practical de-icing applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Superhydrophobic and Photothermal PVDF/CNTs Durable Composite Coatings for Passive Anti-Icing/Active De-Icing
    Jiang, Guo
    Liu, Zhongyang
    Hu, Jinhuan
    [J]. ADVANCED MATERIALS INTERFACES, 2022, 9 (02)
  • [2] A robust superhydrophobic anti-icing/de-icing composite coating with electrothermal and auxiliary photothermal performances
    Zhao, Zehui
    Chen, Huawei
    Zhu, Yantong
    Liu, Xiaolin
    Wang, Zelinlan
    Chen, Jichen
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 227
  • [3] Superhydrophobic and photothermal SiC/TiN durable composite coatings for passive anti-icing/active de-icing and de-frosting
    He, Hua
    Huang, Wei
    Guo, Zhiguang
    [J]. MATERIALS TODAY PHYSICS, 2023, 30
  • [4] Electrothermal/photothermal superhydrophobic coatings based on micro/nano graphite flakes for efficient anti-icing and de-icing
    Wei, Xinpeng
    Cai, Fanggong
    Wang, Jian
    [J]. PROGRESS IN ORGANIC COATINGS, 2023, 182
  • [5] Robust superhydrophobic coating for photothermal anti-icing and de-icing via electrostatic powder spraying
    Zhou, Xihua
    Ou, Junfei
    Hu, Yating
    Wang, Fajun
    Fang, Xinzuo
    Li, Wen
    Chini, Seyed Farshid
    Amirfazli, Alidad
    [J]. PROGRESS IN ORGANIC COATINGS, 2024, 197
  • [6] Magneto-responsive photothermal composite cilia for active anti-icing and de-icing
    Lee, Sang-Hyeon
    Kim, Jaeil
    Seong, Minho
    Kim, Somi
    Jang, Hyejin
    Park, Hyung Wook
    Jeong, Hoon Eui
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 217
  • [7] Flexible superhydrophobic films with the electrothermal and photothermal response for enhanced passive anti-icing and active de-icing
    Wang, Yubo
    Xue, Yiqing
    Sun, Yongyang
    Sui, Xin
    Wang, Yinfeng
    Liang, Wenyan
    Wang, Yanhua
    Zhu, Dongyu
    Zhao, Huanyu
    [J]. SURFACES AND INTERFACES, 2023, 42
  • [8] Porous Graphene-Based Photothermal Superhydrophobic Surface for Robust Anti-Icing and Efficient De-Icing
    Wang, Lu
    Li, Jingxing
    Chen, Zhaochuan
    Song, Zitao
    Meng, Xin
    Chen, Xuemei
    [J]. ADVANCED MATERIALS INTERFACES, 2022, 9 (35):
  • [9] Fluorine-Free Photothermal Superhydrophobic Copper Oxide Micro-/Nanostructured Coatings for Anti-icing/De-icing Applications
    Wei, Jue
    Wei, Xinpeng
    Hou, Minghuan
    Wang, Jian
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (11) : 9928 - 9938
  • [10] A photothermal and superhydrophobic emulsified asphalt coating modified by CNTs and PTFE for anti-icing and de-icing applications
    Peng, Chao
    Yang, Dongjin
    You, Zhanping
    Ruan, Di
    Guan, Peiwen
    Ye, Zhile
    Ning, Yunfei
    Zhao, Ni
    Yang, Feiyu
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2024, 416