Perspective of Waste to Energy and Fuel with Negative Emission Potential: Smart Environmental and Techno-economic Analysis

被引:1
|
作者
Li, Lanyu [1 ,3 ]
Li, Jie [2 ]
Li, Yuchen [1 ]
Luo, Jing [1 ]
Wang, Yin [2 ]
Wang, Xiaonan [1 ,4 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Inst Urban Environm, CAS Key Lab Urban Pollutant Convers, Xiamen 361021, Fujian, Peoples R China
[3] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Key Lab Ind Biocatalysis, Minist Educ, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
waste to energy; sustainability; techno-economicanalysis; life cycle assessment; computational modeling; artificial intelligence; LIFE-CYCLE ASSESSMENT; SUPERCRITICAL WATER GASIFICATION; MUNICIPAL SOLID-WASTE; FOOD WASTE; SEWAGE-SLUDGE; ANAEROBIC-DIGESTION; HYDROTHERMAL CARBONIZATION; CO-DIGESTION; FULL-SCALE; HYDROGEN-PRODUCTION;
D O I
10.1021/acs.energyfuels.3c02109
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Waste to energy and fuel is an emerging area to deal with waste treatment and realize the circular economy. The issues regarding the disposal of wet waste, especially food waste, are of continuous concern worldwide. The growth of wet waste, which is a manifestation of increased human production and consumption, may imply a high carbon input to the atmosphere. However, it can be converted into bioenergy and biochar, which means a latent economic performance and negative emission potential. Studies on wet-waste conversion technologies have been frequently seen in recent years, whereas few studies have been conducted to summarize, compare, and discuss them. In this review, we evaluate several typical wet-waste conversion technologies (including but not limited to anaerobic digestion, hydrothermal carbonization, incineration, gasification, and pyrolysis) through a literature survey and highlight their carbon emissions and negative emission potential for different categories of wet waste. The review shows that, for the treatment of wet waste, including sewage sludge, food waste, and animal manure, all of the discussed wet-waste conversion technologies were found to be more environmentally favorable than traditional landfilling or composting methods. Anaerobic digestion stands out in terms of both sustainability and commercial maturity. Alongside the assessment of carbon footprints across various wet-waste categories, the technological development and economic performance of the waste-to-energy technologies and the application of artificial intelligence in the field have also been reviewed, aiming to present an objective and comprehensive overview of the advantages and disadvantages of these technologies and to ascribe possible projections of future developments in this domain.
引用
收藏
页码:14556 / 14573
页数:18
相关论文
共 50 条
  • [1] Techno-economic and environmental analysis of organic municipal solid waste for energy production
    Alam, Samina
    Rokonuzzaman, Md.
    Rahman, Kazi Sajedur
    Haque, Akramul
    Chowdhury, Md Shahariar
    Prasetya, Tofan Agung Eka
    HELIYON, 2024, 10 (11)
  • [2] Environmental, Energy, and Techno-Economic Assessment of Waste-to-Energy Incineration
    Zeng, Jincan
    Mustafa, Ade Brian
    Liu, Minwei
    Huang, Guori
    Shang, Nan
    Liu, Xi
    Wei, Kexin
    Wang, Peng
    Dong, Huijuan
    SUSTAINABILITY, 2024, 16 (10)
  • [3] Techno-economic analysis of waste paper energy utilization
    Vochozka, Marek
    Marouskova, Anna
    Strakova, Jarmila
    Vachal, Jan
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2016, 38 (23) : 3459 - 3463
  • [4] Conversion of food waste to renewable energy: A techno-economic and environmental assessment
    Chen, Yunzhi
    Pinegar, Lizzie
    Immonen, Jake
    Powell, Kody M.
    JOURNAL OF CLEANER PRODUCTION, 2023, 385
  • [5] Techno-economic analysis of wind energy potential in Kazakhstan
    Pourasl, Hamed H.
    Khojastehnezhad, Vahid M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2021, 235 (06) : 1563 - 1576
  • [6] Designing Smart Energy System for Smart City through Municipal Solid Waste to Electricity: Techno-Economic Analysis
    Octavianthy, Desti
    Purwanto, Widodo Wahyu
    3RD INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE SUSTAINABLE DEVELOPMENT OF TROPICAL RENEWABLE ENERGY (I-TREC 2018), 2018, 67
  • [7] Producing hydrocarbon fuel from the plastic waste: Techno-economic analysis
    Hamad Almohamadi
    Majed Alamoudi
    Usama Ahmed
    Rashid Shamsuddin
    Kevin Smith
    Korean Journal of Chemical Engineering, 2021, 38 : 2208 - 2216
  • [8] Producing hydrocarbon fuel from the plastic waste: Techno-economic analysis
    Almohamadi, Hamad
    Alamoudi, Majed
    Ahmed, Usama
    Shamsuddin, Rashid
    Smith, Kevin
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (11) : 2208 - 2216
  • [9] Techno-economic Analysis of Energy Recovery from Plastic Waste
    Ghodrat, Maryam
    Samali, Bijan
    9TH INTERNATIONAL SYMPOSIUM ON HIGH-TEMPERATURE METALLURGICAL PROCESSING, 2018, : 13 - 24
  • [10] A techno-economic assessment on biomass waste-to-energy potential in Cameroon
    Longfor, Nkweauseh Reginald
    Dong, Liang
    Wang, Jian
    Qian, Xuepeng
    ENVIRONMENTAL RESEARCH LETTERS, 2023, 18 (10)