Parametric modeling of 2.5D woven composites based on computer vision feature extraction

被引:9
|
作者
Guo, Chun [1 ,2 ]
Zhang, Hongjian [1 ,2 ,3 ]
Wang, Yilin [1 ,2 ]
Jia, Yunfa [1 ,2 ]
Qi, Lu [1 ,2 ]
Zhu, Yakun [1 ,2 ]
Cui, Haitao [1 ,2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Aeroengine Thermal Environm & Struct Key Lab, Minist Ind & Informat Technol, Nanjing 210016, Jiangsu, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
2; 5D woven composites; Deep learning; Image algorithm; Parametric modeling; Voxel-mesh full-cell model; BEHAVIORS; AMBIENT;
D O I
10.1016/j.compstruct.2023.117234
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The aim of this paper is to develop a comprehensive modeling strategy for creating a realistic representative volume element (RVE) of 2.5D woven composites. The strategy consists of two main parts: the extraction of geometric feature parameters and the establishment of a parametric voxel-mesh full-cell model (VFM). Firstly, a neural network model is constructed to achieve an accurate segmentation of yarn cross-sections from X-ray computed tomography (XCT) images. Secondly, geometric feature parameters are then extracted from the segmentation results using image algorithms. Finally, a parametric modeling method is proposed to establish the VFM of the material. To evaluate the performance of the VFM, its structural sizes, overall fiber volume fraction (FVF), and stiffness prediction accuracy are assessed. The comparison results indicate that the VFM achieves a fine mesoscale characterization and a high stiffness prediction accuracy.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Vibration fatigue properties of laminated and 2.5D woven composites: A comparative study
    Wang, Yana
    Gong, Yu
    Zhang, Qin
    He, Yuhuai
    Jiao, Jian
    Hu, Ning
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 168
  • [12] Impact behaviors and damage mechanisms of 2.5D woven composites: Experiment and simulation
    Dong, Fang
    Yuan, Qiong
    Liu, Jingyan
    Qian, Kun
    Sun, Jin
    Zhang, Diantang
    JOURNAL OF INDUSTRIAL TEXTILES, 2022, 52
  • [13] Impact behaviors and damage mechanisms of 2.5D woven composites: Experiment and simulation
    Dong, Fang
    Yuan, Qiong
    Liu, Jingyan
    Qian, Kun
    Sun, Jin
    Zhang, Diantang
    JOURNAL OF INDUSTRIAL TEXTILES, 2022, 52
  • [14] Fatigue life prediction model of 2.5D woven composites at various temperatures
    WEN, Weidong (gswwd@nuaa.edu.cn), 2018, Chinese Journal of Aeronautics (31):
  • [15] A continuum damage model for fatigue life prediction of 2.5D woven composites
    Wang, Nan
    Wen, Weidong
    Cui, Haitao
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2021, 28 (01) : 653 - 667
  • [16] Preparation and microwave absorbing properties of 2.5D woven SiCf/SiC composites
    Zhao, Majuan
    Wang, Xiaomeng
    Wang, Ling
    Qiu, Haipeng
    Zhang, Diantang
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (07): : 3630 - 3642
  • [17] Fatigue life prediction model of 2.5D woven composites at various temperatures
    Jian SONG
    Weidong WEN
    Haitao CUI
    Chinese Journal of Aeronautics, 2018, 31 (02) : 310 - 329
  • [18] Impact behaviors and damage mechanisms of 2.5D woven composites: Experiment and simulation
    Dong, Fang
    Yuan, Qiong
    Liu, Jingyan
    Qian, Kun
    Sun, Jin
    Zhang, Diantang
    JOURNAL OF INDUSTRIAL TEXTILES, 2022, 52
  • [19] Fatigue life prediction model of 2.5D woven composites at various temperatures
    Song, Jian
    Wen, Weidong
    Cui, Haitao
    CHINESE JOURNAL OF AERONAUTICS, 2018, 31 (02) : 310 - 329
  • [20] Experiment and numerical simulation on compressive properties of 2.5D woven fabric composites
    School of Aeronautics Science and Engineering, Beihang University, Beijing
    100191, China
    不详
    100076, China
    Fuhe Cailiao Xuebao, 1 (150-159):