Parametric modeling of 2.5D woven composites based on computer vision feature extraction

被引:9
|
作者
Guo, Chun [1 ,2 ]
Zhang, Hongjian [1 ,2 ,3 ]
Wang, Yilin [1 ,2 ]
Jia, Yunfa [1 ,2 ]
Qi, Lu [1 ,2 ]
Zhu, Yakun [1 ,2 ]
Cui, Haitao [1 ,2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Aeroengine Thermal Environm & Struct Key Lab, Minist Ind & Informat Technol, Nanjing 210016, Jiangsu, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
2; 5D woven composites; Deep learning; Image algorithm; Parametric modeling; Voxel-mesh full-cell model; BEHAVIORS; AMBIENT;
D O I
10.1016/j.compstruct.2023.117234
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The aim of this paper is to develop a comprehensive modeling strategy for creating a realistic representative volume element (RVE) of 2.5D woven composites. The strategy consists of two main parts: the extraction of geometric feature parameters and the establishment of a parametric voxel-mesh full-cell model (VFM). Firstly, a neural network model is constructed to achieve an accurate segmentation of yarn cross-sections from X-ray computed tomography (XCT) images. Secondly, geometric feature parameters are then extracted from the segmentation results using image algorithms. Finally, a parametric modeling method is proposed to establish the VFM of the material. To evaluate the performance of the VFM, its structural sizes, overall fiber volume fraction (FVF), and stiffness prediction accuracy are assessed. The comparison results indicate that the VFM achieves a fine mesoscale characterization and a high stiffness prediction accuracy.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] EXPERIMENTAL AND MODELING STUDY ON TENSION CHARACTERISTICS OF A 2.5D WOVEN COMPOSITES
    Teng, Xuefeng
    Shi, Duoqi
    Yang, Xiaoguang
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 6, 2019,
  • [2] A parametric modeling method for 2.5D warp-reinforced woven composites considering the extruded distortion of yarns
    Zhang, Xiangling
    Guo, Junhua
    Wen, Huabing
    Cui, Haitao
    Zhang, Hongjian
    Wen, Weidong
    Guo, Chun
    Zhang, Yifan
    Guo, Wantao
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 257
  • [3] Reverse reconstruction of geometry modeling and numerical verification of 2.5D woven composites based on deep learning
    Zheng, Jianhua
    Qian, Kun
    Zhang, Diantang
    COMPOSITE STRUCTURES, 2024, 329
  • [4] Prediction of Warp Tensile Elasticity of 2.5D Woven Composites
    Li J.
    Li Y.
    Wang R.
    Wei H.
    Kong G.
    Binggong Xuebao/Acta Armamentarii, 2021, 42 (07): : 1516 - 1523
  • [5] Progressive damage and failure simulation of 2.5D woven composites
    Lv Q.
    Zhao Z.
    Li C.
    Zhang C.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2021, 38 (08): : 2747 - 2757
  • [6] Vision-based 2.5D terrain modeling for humanoid locomotion
    Kagami, S
    Nishiwaki, K
    Kuffner, JJ
    Okada, K
    Inaba, M
    Inoue, H
    2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 2141 - 2146
  • [7] Failure and broken Criteria for 2.5D Woven Composites Loaded in Weft
    Zheng Jun
    Wen Weidong
    Cui Haitao
    NEW MATERIALS AND PROCESSES, PTS 1-3, 2012, 476-478 : 771 - +
  • [8] Grinding Characteristics and Surface Roughness Modeling of 2.5D Woven SiCf/SiC Ceramic Matrix Composites
    Zhang, Qi
    Wang, Ben
    Song, Chang
    Wang, Hao
    Shi, Zhongao
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2025, 26 (02) : 249 - 268
  • [9] Feature extraction and localisation on 2.5D face range images
    1600, UK Simulation Society, Clifton Lane, Nottingham, NG11 8NS, United Kingdom (15):
  • [10] Fatigue life prediction model of 2.5D woven composites at various temperatures
    Jian SONG
    Weidong WEN
    Haitao CUI
    Chinese Journal of Aeronautics, 2018, (02) : 310 - 329